Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mireille Montcouquiol is active.

Publication


Featured researches published by Mireille Montcouquiol.


Nature | 2003

Identification of Vangl2 and Scrb1 as planar polarity genes in mammals

Mireille Montcouquiol; Rivka A. Rachel; Pamela J. Lanford; Neal G. Copeland; Nancy A. Jenkins; Matthew W. Kelley

In mammals, an example of planar cell polarity (PCP) is the uniform orientation of the hair cell stereociliary bundles within the cochlea. The PCP pathway of Drosophila refers to a conserved signalling pathway that regulates the coordinated orientation of cells or structures within the plane of an epithelium. Here we show that a mutation in Vangl2, a mammalian homologue of the Drosophila PCP gene Strabismus/Van Gogh, results in significant disruptions in the polarization of stereociliary bundles in mouse cochlea as a result of defects in the direction of movement and/or anchoring of the kinocilium within each hair cell. Similar, but less severe, defects are observed in animals containing a mutation in the LAP protein family gene Scrb1 (homologous with Drosophila scribble). Polarization defects in animals heterozygous for Vangl2 and Scrb1 are comparable with Vangl2 homozygotes, demonstrating genetic interactions between these genes in the regulation of PCP in mammals. These results demonstrate a role for the PCP pathway in planar polarization in mammals, and identify Scrb1 as a PCP gene.


Nature Neuroscience | 2004

Math1 regulates development of the sensory epithelium in the mammalian cochlea

Chad Woods; Mireille Montcouquiol; Matthew W. Kelley

The transcription factor Math1 (encoded by the gene Atoh1, also called Math1) is required for the formation of mechanosensory hair cells in the inner ear; however, its specific molecular role is unknown. Here we show that absence of Math1 in mice results in a complete disruption of formation of the sensory epithelium of the cochlea, including the development of both hair cells and associated supporting cells. In addition, ectopic expression of Math1 in nonsensory regions of the cochlea is sufficient to induce the formation of sensory clusters that contain both hair cells and supporting cells. The formation of these clusters is dependent on inhibitory interactions mediated, most probably, through the Notch pathway, and on inductive interactions that recruit cells to develop as supporting cells through a pathway independent of Math1. These results show that Math1 functions in the developing cochlea to initiate both inductive and inhibitory signals that regulate the overall formation of the sensory epithelia.


The Journal of Neuroscience | 2006

Asymmetric Localization of Vangl2 and Fz3 Indicate Novel Mechanisms for Planar Cell Polarity in Mammals

Mireille Montcouquiol; Nathalie Sans; David Huss; Jacob Kach; J. David Dickman; Andrew Forge; Rivka A. Rachel; Neal G. Copeland; Nancy A. Jenkins; Debora Bogani; Jennifer N. Murdoch; Mark E. Warchol; Robert J. Wenthold; Matthew W. Kelley

Planar cell polarity (PCP) is a process in which cells develop with uniform orientation within the plane of an epithelium. To begin to elucidate the mechanisms of PCP in vertebrates, the localization of the protein Vangl2 (Van Gogh-like) was determined during the development of the mammalian cochlea. Results indicate that Vangl2 becomes asymmetrically localized to specific cell–cell boundaries along the axis of polarization and that this asymmetry is lost in PCP mutants. In addition, PDZ2 (postsynaptic density/Discs large/zona occludens 1), PDZ3, and PDZ4 of the PCP protein Scrb1 (Scribble) are shown to bind to the C-terminal PDZ binding domain of Vangl2, suggesting that Scrb1 plays a direct role in asymmetric targeting of Vangl2. Finally, Fz3 (Frizzled), a newly demonstrated mediator of PCP, is also asymmetrically localized in a pattern that matches that of Vangl2. The presence and asymmetry of Fz3 at the membrane is shown to be dependent on Vangl2. This result suggests a role for Vangl2 in the targeting or anchoring of Fz3, a hypothesis strengthened by the existence of a physical interaction between the two proteins. Together, our data support the idea that protein asymmetry plays an important role in the development of PCP, but the colocalization and interaction of Fz3 and Vangl2 suggests that novel PCP mechanisms exist in vertebrates.


Nature Cell Biology | 2010

Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia

Boris Guirao; Alice Meunier; Stéphane Mortaud; Andrea Aguilar; Jean Marc Corsi; Laetitia Strehl; Yuki Hirota; Angélique Desoeuvre; Camille Boutin; Young Goo Han; Zaman Mirzadeh; Harold Cremer; Mireille Montcouquiol; Kazunobu Sawamoto; Nathalie Spassky

In mammals, motile cilia cover many organs, such as fallopian tubes, respiratory tracts and brain ventricles. The development and function of these organs critically depend on efficient directional fluid flow ensured by the alignment of ciliary beating. To identify the mechanisms involved in this process, we analysed motile cilia of mouse brain ventricles, using biophysical and molecular approaches. Our results highlight an original orientation mechanism for ependymal cilia whereby basal bodies first dock apically with random orientations, and then reorient in a common direction through a coupling between hydrodynamic forces and the planar cell polarity (PCP) protein Vangl2, within a limited time-frame. This identifies a direct link between external hydrodynamic cues and intracellular PCP signalling. Our findings extend known PCP mechanisms by integrating hydrodynamic forces as long-range polarity signals, argue for a possible sensory role of ependymal cilia, and will be of interest for the study of fluid flow-mediated morphogenesis.


Nature Neuroscience | 2010

Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus

Fadel Tissir; Yibo Qu; Mireille Montcouquiol; Libing Zhou; Kouji Komatsu; Dongbo Shi; Toshihiko Fujimori; Jason Labeau; Donatienne Tyteca; Pierre J. Courtoy; Yves Poumay; Tadashi Uemura; André M. Goffinet

Ependymal cells form the epithelial lining of cerebral ventricles. Their apical surface is covered by cilia that beat in a coordinated fashion to facilitate circulation of the cerebrospinal fluid (CSF). The genetic factors that govern the development and function of ependymal cilia remain poorly understood. We found that the planar cell polarity cadherins Celsr2 and Celsr3 control these processes. In Celsr2-deficient mice, the development and planar organization of ependymal cilia are compromised, leading to defective CSF dynamics and hydrocephalus. In Celsr2 and Celsr3 double mutant ependyma, ciliogenesis is markedly impaired, resulting in lethal hydrocephalus. The membrane distribution of Vangl2 and Fzd3, two key planar cell polarity proteins, was disturbed in Celsr2 mutants, and even more so in Celsr2 and Celsr3 double mutants. Our findings suggest that planar cell polarity signaling is involved in ependymal cilia development and in the pathophysiology of hydrocephalus, with possible implications in other ciliopathies.


Development | 2003

Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea.

Alain Dabdoub; Maura J. Donohue; Angela Brennan; Vladimir Wolf; Mireille Montcouquiol; David Sassoon; Jen-Chih Hseih; Jeffrey S. Rubin; Patricia C. Salinas; Matthew W. Kelley

In the mammalian cochlea, stereociliary bundles located on mechanosensory hair cells within the sensory epithelium are unidirectionally oriented. Development of this planar polarity is necessary for normal hearing as stereociliary bundles are only sensitive to vibrations in a single plane; however, the mechanisms governing their orientation are unknown. We report that Wnt signaling regulates the development of unidirectional stereociliary bundle orientation. In vitro application of Wnt7a protein or inhibitors of Wnt signaling, secreted Frizzled-related protein 1 or Wnt inhibitory factor 1, disrupts bundle orientation. Moreover, Wnt7a is expressed in a pattern consistent with a role in the polarization of the developing stereociliary bundles. We propose that Wnt signaling across the region of developing outer hair cells gives rise to planar polarity in the mammalian cochlea.


Development | 2007

Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea.

Bonnie E. Jacques; Mireille Montcouquiol; Erynn M. Layman; Mark Lewandoski; Matthew W. Kelley

The mammalian auditory sensory epithelium (the organ of Corti) contains a number of unique cell types that are arranged in ordered rows. Two of these cell types, inner and outer pillar cells (PCs), are arranged in adjacent rows that form a boundary between a single row of inner hair cells and three rows of outer hair cells (OHCs). PCs are required for auditory function, as mice lacking PCs owing to a mutation in Fgfr3 are deaf. Here, using in vitro and in vivo techniques, we demonstrate that an Fgf8 signal arising from the inner hair cells is the key component in an inductive pathway that regulates the number, position and rate of development of PCs. Deletion of Fgf8 or inhibition of binding between Fgf8 and Fgfr3 leads to defects in PC development, whereas overexpression of Fgf8 or exogenous Fgfr3 activation induces ectopic PC formation and inhibits OHC development. These results suggest that Fgf8-Fgfr3 interactions regulate cellular patterning within the organ of Corti through the induction of one cell fate (PC) and simultaneous inhibition of an alternate fate (OHC) in separate progenitor cells. Some of the effects of both inhibition and overactivation of the Fgf8-Fgfr3 signaling pathway are reversible, suggesting that PC differentiation is dependent upon constant activation of Fgfr3 by Fgf8. These results suggest that PCs might exist in a transient state of differentiation that makes them potential targets for regenerative therapies.


The Journal of Neuroscience | 2006

Inhibitors of Differentiation and DNA Binding (Ids) Regulate Math1 and Hair Cell Formation during the Development of the Organ of Corti

Jennifer M. Jones; Mireille Montcouquiol; Alain Dabdoub; Chad Woods; Matthew W. Kelley

The basic helix-loop-helix (bHLH) transcription factor Math1 (also called Atoh1) is both necessary and sufficient for hair cell development in the mammalian cochlea (Bermingham et al., 1999; Zheng and Gao, 2000). Previous studies have demonstrated that a dynamic pattern of Math1 expression plays a key role in regulating the number and position of mechanosensory hair cells. However, the factors that regulate the temporal and spatial expression of Math1 within the cochlea are unknown. The bHLH-related inhibitors of differentiation and DNA binding (Id) proteins are known to negatively regulate many bHLH transcription factors, including Math1, in a number of different systems. Therefore, Id proteins are good candidates for regulating Math1 in the cochlea. Results from PCR and in situ hybridization indicate that Id1, Id2, and Id3 are expressed within the cochlear duct in a pattern that is consistent with a role in regulation of hair cell development. In particular, expression of Ids and Math1 overlapped in cochlear progenitor cells before cellular differentiation, but a specific downregulation of Id expression was observed in individual cells that differentiated as hair cells. In addition, progenitor cells in which the expression of Ids was maintained during the time period for hair cell differentiation were inhibited from developing as hair cells. These results indicate a key role for Ids in the regulation of expression of Math1 and hair cell differentiation in the developing cochlea.


Development | 2010

Planar cell polarity defects and defective Vangl2 trafficking in mutants for the COPII gene Sec24b

Carolien Wansleeben; Harma Feitsma; Mireille Montcouquiol; Carla Kroon; Edwin Cuppen; Frits Meijlink

Among the cellular properties that are essential for the organization of tissues during animal development, the importance of cell polarity in the plane of epithelial sheets has become increasingly clear in the past decades. Planar cell polarity (PCP) signaling in vertebrates has indispensable roles in many aspects of their development, in particular, controlling alignment of various types of epithelial cells. Disrupted PCP has been linked to developmental defects in animals and to human pathology. Neural tube closure defects (NTD) and disorganization of the mechanosensory cells of the organ of Corti are commonly known consequences of disturbed PCP signaling in mammals. We report here a typical PCP phenotype in a mouse mutant for the Sec24b gene, including the severe NTD craniorachischisis, abnormal arrangement of outflow tract vessels and disturbed development of the cochlea. In addition, we observed genetic interaction between Sec24b and the known PCP gene, scribble. Sec24b is a component of the COPII coat protein complex that is part of the endoplasmic reticulum (ER)-derived transport vesicles. Sec24 isoforms are thought to be directly involved in cargo selection, and we present evidence that Sec24b deficiency specifically affects transport of the PCP core protein Vangl2, based on experiments in embryos and in cultured primary cells.


Nature Cell Biology | 2013

Primary cilium migration depends on G-protein signalling control of subapical cytoskeleton

Jérôme Ezan; Léa Lasvaux; Aysegul Gezer; Ana Novakovic; Helen May-Simera; Edwige Belotti; Anne-Catherine Lhoumeau; Lutz Birnbaumer; Sandra Beer-Hammer; Jean-Paul Borg; André Le Bivic; Bernd Nürnberg; Nathalie Sans; Mireille Montcouquiol

In ciliated mammalian cells, the precise migration of the primary cilium at the apical surface of the cells, also referred to as translational polarity, defines planar cell polarity (PCP) in very early stages. Recent research has revealed a co-dependence between planar polarization of some cell types and cilium positioning at the surface of cells. This important role of the primary cilium in mammalian cells is in contrast with its absence from Drosophila melanogaster PCP establishment. Here, we show that deletion of GTP-binding protein alpha-i subunit 3 (Gαi3) and mammalian Partner of inscuteable (mPins) disrupts the migration of the kinocilium at the surface of cochlear hair cells and affects hair bundle orientation and shape. Inhibition of G-protein function in vitro leads to kinocilium migration defects, PCP phenotype and abnormal hair bundle morphology. We show that Gαi3/mPins are expressed in an apical and distal asymmetrical domain, which is opposite and complementary to an aPKC/Par-3/Par-6b expression domain, and non-overlapping with the core PCP protein Vangl2. Thus G-protein-dependent signalling controls the migration of the cilium cell autonomously, whereas core PCP signalling controls long-range tissue PCP.

Collaboration


Dive into the Mireille Montcouquiol's collaboration.

Top Co-Authors

Avatar

Matthew W. Kelley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nathalie Sans

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Forge

University College London

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Borg

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Nancy A. Jenkins

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Neal G. Copeland

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Rivka A. Rachel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas B. Friedman

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge