Nathalie Sans
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathalie Sans.
Neuron | 2005
Kate Prybylowski; Kai Chang; Nathalie Sans; Lilly Kan; Stefano Vicini; Robert J. Wenthold
The NMDA receptor (NMDAR) is a component of excitatory synapses and a key participant in synaptic plasticity. We investigated the role of two domains in the C terminus of the NR2B subunit--the PDZ binding domain and the clathrin adaptor protein (AP-2) binding motif--in the synaptic localization of NMDA receptors. NR2B subunits lacking functional PDZ binding are excluded from the synapse. Mutations in the AP-2 binding motif, YEKL, significantly increase the number of synaptic receptors and allow the synaptic localization of NR2B subunits lacking PDZ binding. Peptides corresponding to YEKL increase the synaptic response within minutes. In contrast, the NR2A subunit localizes to the synapse in the absence of PDZ binding and is not altered by mutations in its motif corresponding to YEKL of NR2B. This study identifies a dynamic regulation of synaptic NR2B-containing NMDARs through PDZ protein-mediated stabilization and AP-2-mediated internalization that is modulated by phosphorylation by Fyn kinase.
Nature Cell Biology | 2003
Nathalie Sans; Kate Prybylowski; Ronald S. Petralia; Kai Chang; Ya-Xian Wang; Claudia Racca; Stefano Vicini; Robert J. Wenthold
NMDA (N-methyl-D-aspartate) receptors (NMDARs) are targeted to dendrites and anchored at the post-synaptic density (PSD) through interactions with PDZ proteins. However, little is known about how these receptors are sorted from the endoplasmic reticulum and Golgi apparatus to the synapse. Here, we find that synapse-associated protein 102 (SAP102) interacts with the PDZ-binding domain of Sec8, a member of the exocyst complex. Our results show that interactions between SAP102 and Sec8 are involved in the delivery of NMDARs to the cell surface in heterologous cells and neurons. Furthermore, they suggest that an exocyst–SAP102–NMDAR complex is an important component of NMDAR trafficking.
The Journal of Neuroscience | 2001
Nathalie Sans; Claudia Racca; Ronald S. Petralia; Ya-Xian Wang; Jennifer McCallum; Robert J. Wenthold
The regulation of AMPA receptors at the postsynaptic membrane is a fundamental component of synaptic plasticity. In the hippocampus, the induction of long-term potentiation increases the delivery of GluR1, a major AMPA receptor subunit in hippocampal pyramidal neurons, to the synaptic plasma membrane through a mechanism that requires the PDZ binding domain of GluR1. Synapse-associated protein 97 (SAP97), a member of the membrane-associated guanylate kinase family, is believed to associate with AMPA receptors (AMPARs) containing the GluR1 subunit, but the functional significance of these interactions is unclear. We investigated the interaction of GluR1 with SAP97, the only PDZ protein known to interact with GluR1. We find that interactions involving SAP97 and GluR1 occur early in the secretory pathway, while the receptors are in the endoplasmic reticulum orcis-Golgi. In contrast, few synaptic receptors associate with SAP97, suggesting that SAP97 dissociates from the receptor complex at the plasma membrane. We also show that internalization of GluR1, as triggered by NMDAR activation, does not require SAP97. These results implicate GluR1–SAP97 interactions in mechanisms underlying AMPA receptor targeting.
Molecular and Cellular Neuroscience | 2005
Ronald S. Petralia; Nathalie Sans; Ya-Xian Wang; Robert J. Wenthold
In glutamatergic synapses, glutamate receptors (GluRs) associate with many other proteins involved in scaffolding and signal transduction. The ontogeny of these postsynaptic density (PSD) proteins involves changes in their composition during development, paralleling changes in GluR type and function. In the CA1 region of the hippocampus, at postnatal day 2 (P2), many synapses already have a distinct PSD. We used immunoblot analysis, subcellular fractionation, and quantitative immunogold electron microscopy to examine the distribution of PSD proteins during development of the hippocampus. Synapses at P2 contained substantial levels of NR1 and NR2B and most GluR-associated proteins, including SAP102, SynGAP, the chain of proteins from GluRs/SAP102 through GKAP/Shank/Homer and metabotropic glutamate receptors, and the adhesion factors, cadherin, catenin, neuroligin, and Nr-CAM. Development was marked by substantial decreases in NR2B and SAP102 and increases in NR2A, PSD-95, AMPA receptors, and CaMKII. Other components showed more moderate changes.
European Journal of Neuroscience | 2001
Ronald S. Petralia; Ya Xian Wang; Nathalie Sans; Paul F. Worley; John A. Hammer; Robert J. Wenthold
Targeting of glutamate receptors (GluRs) to synapses involves rapid movement of intracellular receptors. This occurs in forms of synaptic upregulation of receptors, such as long‐term potentiation. Thus, many GluRs are retained in a cytoplasmic pool in dendrites, and are transported to synapses for upregulation, presumably via motor proteins such as myosins travelling along cytoskeletal elements that extend up into the spine. In this ultrastructural immunogold study of the cerebellar cortex, we compared synapses between normal rats/mice and dilute lethal mutant mice. These mutant mice lack myosin Va, which has been implicated in protein trafficking at synapses. The postsynaptic spine in the cerebellum lacks the inositol trisphosphate receptor (IP3R) ‐laden reticular tubules that are found in normal mice and rats (Takagishi et al., Neurosci. Lett., 1996, 215, 169). Thus, we tested the hypothesis that myosin Va is necessary for transport of GluRs and associated proteins to spine synapses. We found that these spines retain a normal distribution of (i) GluRs (delta 1/2, GluR2/3 and mGluR1α), (ii) at least one associated MAGUK (membrane‐associated guanylate kinase) protein, (iii) Homer (which interacts with mGluR1α and IP3Rs), (iv) the actin cytoskeleton, (v) the reticulum‐associated protein BiP, and (vi) the motor‐associated protein, dynein light chain. Thus, while myosin Va may maintain the IP3R‐laden reticulum in the spine for proper calcium regulation, other mechanisms must be involved in the delivery of GluRs and associated proteins to synapses. Other possible mechanisms include diffusion along the extrasynaptic membrane and delivery via other motors running along the spines actin cytoskeleton.
Nature Cell Biology | 2013
Jérôme Ezan; Léa Lasvaux; Aysegul Gezer; Ana Novakovic; Helen May-Simera; Edwige Belotti; Anne-Catherine Lhoumeau; Lutz Birnbaumer; Sandra Beer-Hammer; Jean-Paul Borg; André Le Bivic; Bernd Nürnberg; Nathalie Sans; Mireille Montcouquiol
In ciliated mammalian cells, the precise migration of the primary cilium at the apical surface of the cells, also referred to as translational polarity, defines planar cell polarity (PCP) in very early stages. Recent research has revealed a co-dependence between planar polarization of some cell types and cilium positioning at the surface of cells. This important role of the primary cilium in mammalian cells is in contrast with its absence from Drosophila melanogaster PCP establishment. Here, we show that deletion of GTP-binding protein alpha-i subunit 3 (Gαi3) and mammalian Partner of inscuteable (mPins) disrupts the migration of the kinocilium at the surface of cochlear hair cells and affects hair bundle orientation and shape. Inhibition of G-protein function in vitro leads to kinocilium migration defects, PCP phenotype and abnormal hair bundle morphology. We show that Gαi3/mPins are expressed in an apical and distal asymmetrical domain, which is opposite and complementary to an aPKC/Par-3/Par-6b expression domain, and non-overlapping with the core PCP protein Vangl2. Thus G-protein-dependent signalling controls the migration of the cilium cell autonomously, whereas core PCP signalling controls long-range tissue PCP.
Translational Psychiatry | 2014
Thomas Larrieu; L M Hilal; C. Fourrier; V De Smedt-Peyrusse; Nathalie Sans; Lucile Capuron; Sophie Layé
Understanding how malnutrition contributes to depression is building momentum. In the present study we unravel molecular and cellular mechanisms by which nutritional disturbances lead to impaired emotional behaviour in mice. Here we report that nutritional n-3 polyunsaturated fatty acids (PUFA) deficiency induces a chronic stress state reflected by disrupted glucocorticoid receptor (GR)-mediated signalling pathway along with hypothalamic–pituitary–adrenal (HPA) axis hyperactivity. This hyperactivity in turn resulted in neuronal atrophy in the dorsolateral (dl)- and dorsomedial (dm)- prefrontal cortex (PFC) and subsequent mood-related behaviour alterations, similarly to chronic social defeat stress. Supplementation of n-3 PUFA prevented detrimental chronic social defeat stress-induced emotional and neuronal impairments by impeding HPA axis hyperactivity. These results indicate a role for dietary n-3 PUFA in the prevention of HPA axis dysfunction associated with the development of some neuropsychiatric disorders including depression.
The Journal of Neuroscience | 2007
Zhaohong Yi; Ronald S. Petralia; Zhanyan Fu; Catherine Croft Swanwick; Ya-Xian Wang; Kate Prybylowski; Nathalie Sans; Stefano Vicini; Robert J. Wenthold
The NMDA receptor is an important component of excitatory synapses in the CNS. In addition to its synaptic localization, the NMDA receptor is also present at extrasynaptic sites where it may have functions distinct from those at the synapse. Little is known about how the number, composition, and localization of extrasynaptic receptors are regulated. We identified a novel NMDA receptor-interacting protein, GIPC (GAIP-interacting protein, C terminus), that associates with surface as well as internalized NMDA receptors when expressed in heterologous cells. In neurons, GIPC colocalizes with a population of NMDA receptors on the cell surface, and changes in GIPC expression alter the number of surface receptors. GIPC is mainly excluded from the synapse, and changes in GIPC expression do not change the total number of synaptic receptors. Our results suggest that GIPC may be preferentially associated with extrasynaptic NMDA receptors and may play a role in the organization and trafficking of this population of receptors.
The Journal of Neuroscience | 2010
Maïté Moreau; Nicolas Piguel; Thomas Papouin; Muriel Koehl; Christelle M. Durand; Maria E. Rubio; François Loll; Elodie Richard; Claire Mazzocco; Claudia Racca; Stéphane H. R. Oliet; D. Nora Abrous; Mireille Montcouquiol; Nathalie Sans
Scribble (Scrib) is a key regulator of apicobasal polarity, presynaptic architecture, and short-term synaptic plasticity in Drosophila. In mammals, its homolog Scrib1 has been implicated in cancer, neural tube closure, and planar cell polarity (PCP), but its specific role in the developing and adult nervous system is unclear. Here, we used the circletail mutant, a mouse model for PCP defects, to show that Scrib1 is located in spines where it influences actin cytoskeleton and spine morphing. In the hippocampus of these mutants, we observed an increased synapse pruning associated with an increased number of enlarged spines and postsynaptic density, and a decreased number of perforated synapses. This phenotype was associated with a mislocalization of the signaling pathway downstream of Scrib1, leading to an overall activation of Rac1 and defects in actin dynamic reorganization. Finally, Scrib1-deficient mice exhibit enhanced learning and memory abilities and impaired social behavior, two features relevant to autistic spectrum disorders. Our data identify Scrib1 as a crucial regulator of brain development and spine morphology, and suggest that Scrib1crc/+ mice might be a model for studying synaptic dysfunction and human psychiatric disorders.
Development | 2012
Arnaud P. Giese; Jérôme Ezan; Lingyan Wang; Léa Lasvaux; Frédérique Lembo; Claire Mazzocco; Elodie Richard; Jérôme Reboul; Jean Paul Borg; Matthew W. Kelley; Nathalie Sans; John Brigande; Mireille Montcouquiol
Vangl2 is one of the central proteins controlling the establishment of planar cell polarity in multiple tissues of different species. Previous studies suggest that the localization of the Vangl2 protein to specific intracellular microdomains is crucial for its function. However, the molecular mechanisms that control Vangl2 trafficking within a cell are largely unknown. Here, we identify Gipc1 (GAIP C-terminus interacting protein 1) as a new interactor for Vangl2, and we show that a myosin VI-Gipc1 protein complex can regulate Vangl2 traffic in heterologous cells. Furthermore, we show that in the cochlea of MyoVI mutant mice, Vangl2 presence at the membrane is increased, and that a disruption of Gipc1 function in hair cells leads to maturation defects, including defects in hair bundle orientation and integrity. Finally, stimulated emission depletion microscopy and overexpression of GFP-Vangl2 show an enrichment of Vangl2 on the supporting cell side, adjacent to the proximal membrane of hair cells. Altogether, these results indicate a broad role for Gipc1 in the development of both stereociliary bundles and cell polarization, and suggest that the strong asymmetry of Vangl2 observed in early postnatal cochlear epithelium is mostly a ‘tissue’ polarity readout.