Mireille Raccurt
Claude Bernard University Lyon 1
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mireille Raccurt.
Neuroscience | 2011
Richard C. Li; Shang Z. Guo; Mireille Raccurt; Elara Moudilou; Gérard Morel; Kenneth R. Brittian; David Gozal
Sleep disordered breathing (SDB), which is characterized by intermittent hypoxia (IH) during sleep, causes substantial cardiovascular and neurocognitive complications and has become a growing public health problem. SDB is associated with suppression of growth hormone (GH) secretion, the latter being integrally involved in the growth, development, and function of the CNS. Since GH treatment is able to attenuate neurocognitive deficits in a hypoxic-ischemic stroke model, GH, GH receptor (GHR) mRNA expression, and GH protein expression were assessed in rat hippocampus after exposures to chronic sustained hypoxia (CH, 10% O(2)) or IH (10% O(2) alternating with 21% O(2) every 90 s). In addition, the effect of GH treatment (50 μg/kg daily s.c. injection) on erythropoietin (EPO), vascular endothelial growth factor (VEGF), heme oxygenase-1 (HO-1), and GLUT-1 mRNA expression and neurobehavioral function was assessed. CH significantly increased GH mRNA and protein expression, as well as insulin-like growth factor-1 (IGF-1). In contrast, IH only induced a moderate increase in GH mRNA and a slight elevation in GH protein at day 1, but no increases in IGF-1. CH, but not IH, up-regulated GHR mRNA in the hippocampus. IH induced marked neurocognitive deficits compared with CH or room air (RA). Furthermore, exogenous GH administration increased hippocampal mRNA expression of IGF-1, EPO, and VEGF, and not only reduced IH-induced hippocampal injury, but also attenuated IH-induced cognitive deficits. Thus, exogenous GH may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from SDB-associated neuronal loss and associated neurocognitive dysfunction.
Journal of Histochemistry and Cytochemistry | 2001
Sophie Recher; Mireille Raccurt; Anne Lambert; Peter E. Lobie; Hichem C. Mertani
Growth hormone (GH) exerts its immune effects on mature lymphocytes through an autocrine/paracrine mechanism. We investigated the prenatal synthesis of GH mRNA in rat lymphoid organs using the sensitive in situ RT-PCR methodology. We show that GH transcripts are detectable in the thymus and liver of the 18-day fetus. At this stage, all thymocytes are immature and express the GH gene. In fetal liver, GH gene expression was localized in circulating lymphocytes and in hematopoietic cells surrounding GH mRNA-negative hepatocytes. In situ GH gene expression in fetal lymphoid organs was confirmed by in vitro RT-PCR showing that the amplified product from fetal lymphoid tissues was similar to the product obtained from the pituitary. Moreover, GH gene expression was detected in the thymus, spleen, and ileum Peyers patches of adult rat, with a localization restricted to the lymphocytes and endothelial and smooth muscle cells of blood vessels. The autocrine/paracrine expression of the GH gene by lymphoid and hematopoietic cells during fetal growth might influence the generation of regulatory cells involved in immunity and hematopoiesis.
Cell and Tissue Research | 1987
Christian Girod; Nicole Durand; Mireille Raccurt
SummaryS-100 protein-immunoreactive cells were demonstrated by immunocytochemical procedures in the pancreatic islets of Langerhans in the monkey Macaca irus. By use of antibodies against human S-100 protein or bovine S-100 protein, these cells were observed in all islets in the head and tail portions of the pancreas. Immunostained cells were usually located in the center of the islets or sometimes found in a more widely distributed form, but they were never arranged in a regular concentric fashion. The number of immunoreactive cells varied from one islet to another but it was relatively limited making up only 0.75%–6.3% of all insular cells. With the use of the double-immunoenzymatic procedure for demonstration of the four main endocrine cell types (insulin-, glucagon-, somatostatin-and pancreatic polypeptide producing elements), it was possible to establish that S-100 protein-immunoreactive cells represent a distinct cell type. Antibodies against S-100 protein-stained neuroinsular complexes. The present findings speak in favor of a new cell type to be added to the large variety of S-100 protein-immunoreactive cells outside the central nervous system.
Cell and Tissue Research | 1986
Christian Girod; Jacqueline Trouillas; Mireille Raccurt; Maurice P. Dubois
SummaryWith the use of an antibody against bovine S-100 protein, it was possible to reveal a characteristic cell type in the pars distalis and the pars tuberalis of the monkey Macaca irus. In the adenohypophysis of Cercopithecus aethiops, labeled cells were present in the pars distalis, pars tuberalis, and pars intermedia. These cells, so-called folliculo-stellate cells, were found in all pituitaries studied. Surprisingly, an antibody against human S-100 protein did not label the stellate cells of the adenohypophysis. However, in Macaca irus, this antibody gave a strong positive reaction with various other cell types (interstitial cells of the pineal gland, Müller cells of the retina, autonomic ganglionic cells, glial cells of the central nervous system, Schwann cells, Bergmann glia of the cerebellum, fat cells, reticular cells of lymphoid organs). By use of double immunoenzymatic labeling, it was evident that stellate cells are spatially related either to somatotropes, prolactin cells, “corticotropes”, or to glycoprotein-containing cells. Thus, a specific relationship to a particular endocrine-cell type could not be observed.
Advances in Experimental Medicine and Biology | 2008
Sahra Borges; Elara Moudilou; Cécile M. Vouyovitch; Jean Chiesa; Peter E. Lobie; Hichem C. Mertani; Mireille Raccurt
Cytokines and growth factors are responsible for inducing the expression of suppressor of cytokine signaling (SOCS) and cytokine-inducible SH2 containing (CIS) proteins. SOCS and CIS proteins are negative regulators of the JAK/STAT pathway, and exert their physiological effects by suppressing the tyrosine kinase activity of cytokine receptors and inhibiting STAT activation. Growth hormone (GH) is considered as a true cytokine and its local production directly contributes to tumor progression. In an initial study, we have found that CIS expression is increased in human breast cancer in proliferative areas corresponding to high level of GH synthesis. The results of the study presented here confirm the presence of a negative feed back loop in MCF7 cells stably transfected with the hGH gene (MCF-hGH). Real-time PCR analysis showed that gene expression levels of CIS were increased by 80% in MCF-hGH cells as compared to control cell line. Similarly, we have found that the level of CIS gene expression is increased by 50% in primary cultures of human breast cancer, reinforcing the pathophysiological impact of CIS. We previously demonstrated that increasing levels of transfected CIS resulted in strong activation of the mitogen-activated protein (MAP) kinase pathway. Thus, CIS protein has been hypothesized as acting like an activator of the MAPK pathway and an inhibitor of the differentiated cells functions mediated through the JAK/STAT pathway. In the present study, we demonstrate the role of CIS protein in tumor progression in particular its positive effects on cell proliferation and colony formation.
International Journal of Cancer | 2007
Luo Yin; Aldamaria Puliti; Elena Bonora; Cecilia Evangelisti; Valerio Conti; Wei-Min Tong; Jean-Jacques Medard; Marie-France Lavoué; Nathalie Forey; Lily C. Wang; Serge Manié; Mireille Raccurt; Zhao-Qi Wang; Giovanni Romeo
Germline RET mutations are responsible for different inherited disorders: Hirschsprung disease (congenital aganglionic megacolon), caused by loss of function mutations, familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2, caused by gain of function mutations. Intriguingly, some RET mutations, including C620R, are associated with both types of diseases. To investigate the dual role of such RET mutations, a mouse model with a targeted mutation retC620R was generated. retC620R/C620R offspring die during the first postnatal day, and show kidney agenesis and intestinal aganglionosis. Decreased outgrowth of the Ret‐positive cells was observed in retC620R/C620R neuronal cell cultures, which is suggestive of an impaired migration, proliferation or survival of the Ret‐expressing cells. Electronmicroscopy revealed the absence of membrane‐bound Ret in retC620R/C620R cells as compared to ret+/+ and ret+/C620R cells. On the other hand, aged ret+/C620R mice develop precancerous lesions in the adrenal gland or in the thyroid. Our results suggest that the retC620R mutation has a loss of function effect in homozygotes and exhibits a dominant gain of function effect with low penetrance causing hyperplasia in heterozygotes.
PLOS ONE | 2013
Cyril Degletagne; Damien Roussel; Jean Louis Rouanet; Fanny Baudimont; Elodie-Marie Moureaux; Steve Harvey; Claude Duchamp; Yvon Le Maho; Mireille Raccurt
The evolutionary trade-off between tissue growth and mature function restricts the post natal development of polar birds. The present study uses an original integrative approach as it includes gene expression, plus biochemical and physiological analysis to investigate how Adélie penguin chicks achieve a rapid growth despite the energetic constraints linked to the cold and the very short breeding season in Antarctica. In pectoralis muscle, the main thermogenic tissue in birds, our data show that the transition from ectothermy to endothermy on Day 15 post- hatching is associated with substantial and coordinated changes in the transcription of key genes. While the early activation of genes controlling cell growth and differentiation (avGHR, avIGF-1R, T3Rβ) is rapidly down-regulated after hatching, the global increase in the relative expression of genes involved in thermoregulation (avUCP, avANT, avLPL) and transcriptional regulation (avPGC1α, avT3Rβ) underlie the muscular acquisition of oxidative metabolism. Adélie chicks only become real endotherms at 15 days of age with the development of an oxidative muscle phenotype and the ability to shiver efficiently. The persistent muscular expression of IGF-1 throughout growth probably acts as a local mediator to adjust muscle size and its oxidative capacity to anticipate the new physiological demands of future Dives in cold water. The up-regulation of T3Rβ mRNA levels suggests that circulating T3 may play an important role in the late maturation of skeletal muscle by reinforcing, at least in part, the paracrine action of IGF-1. From day 30, the metabolic shift from mixed substrate to lipid metabolism, with the markedly increased mRNA levels of muscle avLPL, avANT and avUCP, suggests the late development of a fatty acid-enhanced muscle non-shivering thermogenesis mechanism. This molecular control is the key to this finely-tuned strategy by which the Adélie penguin chick successfully heads for the sea on schedule.
Advances in Experimental Medicine and Biology | 2008
Cécile M. Vouyovitch; Laurent Vidal; Sahra Borges; Mireille Raccurt; Cécile Arnould; Jean Chiesa; Peter E. Lobie; Joël Lachuer; Hichem-Claude Mertani
Human growth hormone (hGH) is expressed by mammary epithelial cells and associated with proliferative disorders of the human breast. Our goal is to characterize the paracrine effects of hGH on morphological and functional changes of mammary carcinoma cells using MCF7 cells stably transfected with the hGH gene (MCFhGH). To identify the molecular actors involved in autocrine hGH-induced cell proliferation, we have used a protein chip technology using a commercial antibody microarray. The results enabled us to qualitatively characterize MCF-hGH cells proteome from a panel of 500 proteins. Statistical analysis of variations in protein levels between the two cell lines did not highlight any significant differences. Thus, we concluded that variations in MCF-hGH proteome are more likely to reside in the activation status rather than drastic variations in the expression level of the 500 spotted proteins. To test this hypothesis, we confronted the protein chip result to the study of the regulation of the transcriptional factor Pax (Paired-box)-5 whose expression was not found to be altered on the protein chip. Surprisingly, we found that autocrine production of hGH in MCF7 cells was associated with a strong nuclear accumulation of Pax5 in a JAK2-dependent manner associated with an increase in Pax5-DNA binding activity. Our work indicates that subtle changes mediated by Pax5 are responsible for autocrine hGH-induced cell proliferation.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Loïc Teulier; Cyril Degletagne; Jérémy Tornos; Céline Keime; Marc de Dinechin; Mireille Raccurt; Jean-Louis Rouanet; Damien Roussel; Claude Duchamp
The passage from shore to marine life of juvenile penguins represents a major energetic challenge to fuel intense and prolonged demands for thermoregulation and locomotion. Some functional changes developed at this crucial step were investigated by comparing pre-fledging king penguins with sea-acclimatized (SA) juveniles (Aptenodytes patagonicus). Transcriptomic analysis of pectoralis muscle biopsies revealed that most genes encoding proteins involved in lipid transport or catabolism were upregulated, while genes involved in carbohydrate metabolism were mostly downregulated in SA birds. Determination of muscle enzymatic activities showed no changes in enzymes involved in the glycolytic pathway, but increased 3-hydroxyacyl-CoA dehydrogenase, an enzyme of the β-oxidation pathway. The respiratory rates of isolated muscle mitochondria were much higher with a substrate arising from lipid metabolism (palmitoyl-l-carnitine) in SA juveniles than in terrestrial controls, while no difference emerged with a substrate arising from carbohydrate metabolism (pyruvate). In vivo, perfusion of a lipid emulsion induced a fourfold larger thermogenic effect in SA than in control juveniles. The present integrative study shows that fuel selection towards lipid oxidation characterizes penguin acclimatization to marine life. Such acclimatization may involve thyroid hormones through their nuclear beta receptor and nuclear coactivators.
PLOS ONE | 2013
Aurélie Goutte; Yves Cherel; Marie-Noëlle Houssais; Vincent Klein; Catherine Ozouf-Costaz; Mireille Raccurt; Camille Robineau; Guillaume Massé
The structure, functioning and dynamics of polar marine ecosystems are strongly influenced by the extent of sea ice. Ice algae and pelagic phytoplankton represent the primary sources of nutrition for higher trophic-level organisms in seasonally ice-covered areas, but their relative contributions to polar marine consumers remain largely unexplored. Here, we investigated the potential of diatom-specific lipid markers and highly branched isoprenoids (HBIs) for estimating the importance of these two carbon pools in an Antarctic pelagic ecosystem. Using GC-MS analysis, we studied HBI biomarkers in key marine species over three years in Adélie Land, Antarctica: euphausiids (ice krill Euphausia crystallorophias and Antarctic krill E. superba), fish (bald notothens Pagothenia borchgrevinki and Antarctic silverfish Pleuragramma antarcticum) and seabirds (Adélie penguins Pygoscelis adeliae, snow petrels Pagodroma nivea and cape petrels Daption capense). This study provides the first evidence of the incorporation of HBI lipids in Antarctic pelagic consumers. Specifically, a di-unsaturated HBI (diene) of sea ice origin was more abundant in ice-associated species than in pelagic species, whereas a tri-unsaturated HBI (triene) of phytoplanktonic origin was more abundant in pelagic species than in ice-associated species. Moreover, the relative abundances of diene and triene in seabird tissues and eggs were higher during a year of good sea ice conditions than in a year of poor ice conditions. In turn, the higher contribution of ice algal derived organic matter to the diet of seabirds was related to earlier breeding and higher breeding success. HBI biomarkers are a promising tool for estimating the contribution of organic matter derived from ice algae in pelagic consumers from Antarctica.