Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mireille Verdier is active.

Publication


Featured researches published by Mireille Verdier.


Experimental Dermatology | 2011

Autophagy in human keratinocytes: an early step of the differentiation?

Elodie Aymard; Vincent Barruche; Thomas Naves; Sylvie Bordes; B. Closs; Mireille Verdier; Marie-Hélène Ratinaud

Abstract:  Studies have established that autophagy constitutes an efficient process to recycle cellular components and certain proteins. The phenomenon was demonstrated primarily in response to nutrient starvation, and there are increasing evidences that it is implied in differentiation. Keratinocyte differentiation was going along an activation of lysosomal enzymes and organelle clearance, and terminal steps are sometimes described as a specialized form of cell death leading to corneocytes. We examined whether initiation of the process in human keratinocyte HaCaT involves autophagy. The KSFM™ culture medium was substituted by M199, which contains a low glucose concentration but a high calcium level (known to induce differentiation). Metabolic stress reduced enhanced cell number in G1 phase, without apoptotic features (ΔΨmt and membrane integrity are unchanged). Morphological changes were associated with a lower integrin ß1 expression and modifications of protein levels involved in keratinocyte differentiation (involucrin, keratin K10 and ΔNp63α). Whereas autophagic signalling was supported by SIRT1 and pAMPK (T172) increase according to time kinetic, which led to the disappearance of mTOR phosphorylated on S2448 residue. The significant Bcl‐XL level reduction with stress promoted autophagy, by the release of Beclin‐1, whereas ATG5‐ATG12 and LC3‐II that are involved in autophagosome formation were enhanced significantly. Then, the level of lysosomal protein cathepsin B rose to execute autophagy. Kinetic studies established that autophagy would constitute an early signalling process required for keratinocyte commitment in differentiation pathway.


Biochemical Pharmacology | 2013

Autophagy takes place in mutated p53 neuroblastoma cells in response to hypoxia mimetic CoCl2

Thomas Naves; Soha Jawhari; Marie-Odile Jauberteau; Marie-Hélène Ratinaud; Mireille Verdier

Solid tumors like neuroblastoma exhibit hypoxic areas, which can lead both to cell death or aggressiveness increase. Hypoxia is a known stress able to induce stabilization of p53, implicated in cell fate regulation. Recently, p53 appeared to be involved in autophagy in an opposite manner, depending on its location: when nuclear, it enhanced transcription of pro-autophagic genes whereas when cytoplasmic, it inhibited the autophagic process. Today, we used cobalt chloride, a hypoxia mimetic that inhibits proteasomal HIF-1 degradation and generates reactive oxygen species (ROS). We focused on CoCl2-induced cell death in a DNA-binding mutated p53 neuroblastoma cell line (SKNBE(2c)). An autophagic signaling was evidenced by an increase of Beclin-1, ATG 5-12, and LC3-II expression whereas the p53(mut) presence decreased with CoCl2 time exposure. Activation of the pathway seemed to protect cells from ROS production and, at least in part, from death. The autophagic inhibitors activated the apoptotic signaling and the death was enhanced. To delineate the eventual implication of the p53(mut) in the autophagic process in response to hypoxia, we monitored signaling in p53(WT)SHSY5Y cells, after either shRNA-p53 down-regulation or transcriptional activity inhibition by pifithrin alpha. We did not detect autophagy neither with p53(wt) nor when p53 was lacking whereas such a response was effective with a mutated or inactivated p53. To conclude, mutated p53 in neuroblastoma cells could be linked with the switch between apoptotic response and cell death by autophagy in response to hypoxic mimetic stress.


International Journal of Oncology | 2011

The cell death response to the ROS inducer, cobalt chloride, in neuroblastoma cell lines according to p53 status.

Christophe Stenger; Thomas Naves; Mireille Verdier; Marie-Hélène Ratinaud

Cobalt chloride (CoCl2), a hypoxia-mimetic agent, induces reactive oxygen species (ROS) generation, leading to cell death. Divergent data have been reported concerning p53 implication in this apoptotic mechanism. In this study, we studied cobalt-induced cell death in neuroblastoma cell lines carrying wild-type (WT) p53 ( SHSY5Y) and a mutated DNA-binding domain p53 [SKNBE(2c)]. CoCl2 induced an upregulation of p53, p21 and PUMA expression in WT cells but not in SKNBE(2c). In SHSY5Y cells, p53 serine-15 phosphorylation appeared early (6 h) in the mitochondria, and also in the nucleus after 12 h. In contrast, in SKNBE(2c) cells, the slight nuclear signal disappeared with CoCl2 treatment. In SHSY5Y cells, a mitochondrial pathway dependent on caspases [collapse of mitochondrial transmembrane potential (∆Ψmt), caspase 3 and 9 activation], was activated in a time-dependent manner. SKNBE(2c) cells exhibited a delay in the cell death executive phase linked to a caspase-independent pathway, involving apoptosis inducing factor nuclear translocation, but also an autophagic process attested by LC3-II expression and cathepsin-B activation. The downregulation of p53 in SHSY5Y cells by siRNA induced a cell death pathway related to the one observed in SKNBE(2c) cells. Finally, CoCl2 induced time-dependent canonical p53 mitochondrial apoptosis in the WT p53 cell line, and caspase-independent cell death in cells with a mutated or KO p53.


Anti-Cancer Drugs | 2001

Sequential gene expression of P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP) and lung resistance protein: functional activity of P-gp and MRP present in the doxorubicin-resistant human K562 cell lines.

Fabienne Grandjean; Laure Brémaud; Mireille Verdier; Jacques Robert; Marie-Hélène Ratinaud

Previous studies have reported that P-glycoprotein (P-gp), a transmembrane efflux pump involved in multidrug resistance (MDR), was overexpressed in the doxorubicin (Dox)-resistant human erythroleukemia cell line K562. Nevertheless, several results suggested that P-gp was not the only mechanism involved in these resistant cells. Sequential co-expression of other MDR-associated proteins was sometimes reported, as MDR-associated protein (MRP) and lung resistance protein (LRP), in different MDR cell lines. Thus, mRNA expression and stability of P-gp, MRP and LRP were analyzed, while their corresponding protein levels were quantified in correlation with functional assay, in the K562 cell line and two Dox-resistant variants (K562/R). Their P-gp content was in accordance with their degree of resistance, but not as much in the level of mRNA expression, suggesting a post-transcriptional regulation. On the other hand, MRP could play a minor role in MDR because of an unchanged expression in K562/R sublines. A surprising progressive disappearance of LRP in both resistant cells suggested that the original mechanism of drug redistribution may be operative, involving a negative role for LRP.


Optics Express | 2015

Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications.

Sandeep Manhas; Jérémy Vizet; Stanislas Deby; Jean-Charles Vanel; Paola Boito; Mireille Verdier; Antonello De Martino; Dominique Pagnoux

A novel technique to measure the full 4 × 4 Mueller matrix of a sample through an optical fiber is proposed, opening the way for endoscopic applications of Mueller polarimetry for biomedical diagnosis. The technique is based on two subsequent Mueller matrices measurements: one for characterizing the fiber only, and another for the assembly of fiber and sample. From this differential measurement, we proved theoretically that the polarimetric properties of the sample can be deduced. The proof of principle was experimentally validated by measuring various polarimetric parameters of known optical components. Images of manufactured and biological samples acquired by using this approach are also presented.


Cell Death and Disease | 2016

Glioblastoma, hypoxia and autophagy: a survival-prone ‘ménage-à-trois’

Soha Jawhari; Marie-Hélène Ratinaud; Mireille Verdier

Glioblastoma multiforme is the most common and the most aggressive primary brain tumor. It is characterized by a high degree of hypoxia and also by a remarkable resistance to therapy because of its adaptation capabilities that include autophagy. This degradation process allows the recycling of cellular components, leading to the formation of metabolic precursors and production of adenosine triphosphate. Hypoxia can induce autophagy through the activation of several autophagy-related proteins such as BNIP3, AMPK, REDD1, PML, and the unfolded protein response-related transcription factors ATF4 and CHOP. This review summarizes the most recent data about induction of autophagy under hypoxic condition and the role of autophagy in glioblastoma.


Bioorganic & Medicinal Chemistry Letters | 2013

Hydrophilic chlorin-conjugated magnetic nanoparticles—Potential anticancer agent for the treatment of melanoma by PDT

Jean Pierre Mbakidi; Nicolas Drogat; Robert Granet; Tan-Sothea Ouk; Marie-Hélène Ratinaud; Eric Rivière; Mireille Verdier; Vincent Sol

This Letter reports the synthesis and the characterization of two new water-stable and soluble photosensitizer-conjugated magnetic nanoparticles (PS-MNPs) composed of an iron oxide magnetic core coated with a biocompatible dextran shell bearing polyaminated chlorin p6. Designed to improve cancer cell targeting, these photosensitizers were assayed for their antitumour activity against two variants of B16 mouse melanoma cell line (B16F10 and B16G4F, with or without melanin, respectively). Cell viability measurements demonstrated that PS-MNPs were more phototoxic than PEI-chlorin p6 making these photosensitizers promising for further in vitro and in vivo investigations.


Carcinogenesis | 2017

Autophagy and TrkC/NT-3 signaling joined forces boost the hypoxic glioblastoma cell survival

Soha Jawhari; Barbara Bessette; Sophie Hombourger; Karine Durand; Aurélie Lacroix; François Labrousse; Marie-Odile Jauberteau; Marie-Hélène Ratinaud; Mireille Verdier

Glioblastoma multiform (GBM), the most common and aggressive primary brain tumor, is characterized by a high degree of hypoxia and resistance to therapy because of its adaptation capacities, including autophagy and growth factors signaling. In this study, we show an efficient hypoxia-induced survival autophagy in four different GBM cell lines (U87MG, M059K, M059J and LN-18) and an activation of a particular neurotrophin signaling pathway. Indeed, the enhancement of both TrkC and NT-3 was followed by downstream p38MAPK phosphorylation, suggesting the occurrence of a survival autocrine loop. Autophagy inhibition increased the hypoxia-induced expression of TrkC and its phosphorylated form as well as the phosphorylation of p38, suggesting a complementary effect of the two processes, leading to cell survival. Alone, autophagy inhibition reduced cellular growth without inducing cell death. However, the double inhibition of autophagy and TrkC signaling was necessary to bring cells to death as shown by PARP cleavage, particularly important in hypoxia. Moreover, a very high expression of TrkC and NT-3 was found in tumor sections from GBM patients, highlighting the importance of neurotrophic signaling in GBM tumor cell survival. These data suggest that a combined treatment targeting these two pathways could be considered in order to induce the death of GBM cells.


Cytometry Part A | 2006

Aged mice exhibit distinct peripheral B‐cell phenotypes differing in apoptotic susceptibility: An ex vivo analysis

Mireille Verdier; Emilie Malissein; Eliza Munteanu; Chantal Jayat-Vignoles; Marie-Hélène Ratinaud; Danielle Troutaud

Age‐related changes in the antibody response have been classically associated with alterations in T‐cell help, but increasing evidence shows that intrinsic B‐cell defects exist. This article analyzes the apoptotic susceptibility of peripheral B‐cells in aged and young control mice.


Oncotarget | 2016

N52 monodeamidated Bcl‑x L shows impaired oncogenic properties in vivo and in vitro

Florian Beaumatin; Mohamad El Dhaybi; Jean-Paul Lasserre; Bénédicte Salin; Mary P. Moyer; Mireille Verdier; Stéphen Manon; Muriel Priault

Bcl-xL is a member of the Bcl-2 family, playing a critical role in the survival of tumor cells. Here, we show that Bcl-xL oncogenic function can be uncoupled from its anti-apoptotic activity when it is regulated by the post-translational deamidation of its Asn52. Bcl-xL activity can be regulated by post-translational modifications: deamidation of Asn52 and 66 into Asp residues was reported to occur exclusively in response to DNA damage, and to cripple its anti-apoptotic activity. Our work reports for the first time the spontaneous occurrence of monodeamidated Asp52Bcl-xL in control conditions, in vivo and in vitro. In the normal and cancer cell lines tested, no less than 30% and up to 56% of Bcl-xL was singly deamidated on Asn52. Functional analyses revealed that singly deamidated Bcl-xL retains anti-apoptotic functions, and exhibits enhanced autophagic activity while harboring impaired clonogenic and tumorigenic properties compared to native Bcl-xL. Additionally, Asp52Bcl-xL remains phosphorylatable, and thus is still an eligible target of anti-neoplasic agents. Altogether our results complement the existing data on Bcl-xL deamidation: they challenge the common acceptance that Asn52 and Asn66 are equally eligible for deamidation, and provide a valuable improvement of our knowledge on the regulation of Bcl-xLoncogenic functions by deamidation.

Collaboration


Dive into the Mireille Verdier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muriel Priault

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge