Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miriam Araña is active.

Publication


Featured researches published by Miriam Araña.


Cell Transplantation | 2012

Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical Swine model of myocardial infarction.

Manuel Mazo; Salomón Hernández; Juan J. Gavira; Gloria Abizanda; Miriam Araña; Tania López‐Martínez; Cristina Moreno; Juana Merino; Alba de Martino-Rodriguez; Alicia Uixeira; José A. García de Jalón; Juan Pastrana; Diego Martínez-Caro; Felipe Prosper

The aim of the study was to determine the long-term effect of transplantation of adipose-derived stromal cells (ADSCs) in a preclinical model of ischemia/reperfusion (I/R). I/R was induced in 28 Goettingen minipigs by 120 min of coronary artery occlusion followed by reperfusion. Nine days later, surviving animals were allocated to receive transendocardial injection of a mean of 213.6 ± 41.78 million green fluorescent protein (GFP)-expressing ADSCs (n = 7) or culture medium as control (n = 9). Heart function, cell engraftment, and histological analysis were performed 3 months after transplantation. Transplantation of ADSCs induced a statistically significant long-lasting (3 months) improvement in cardiac function and geometry in comparison with control animals. Functional improvement was associated with an increase in angiogenesis and vasculogenesis and a positive effect on heart remodeling with a decrease in fibrosis and cardiac hypertrophy in animals treated with ADSCs. Despite the lack of cell engraftment after 3 months, ADSC transplantation induced changes in the ratio between MMP/TIMP. Our results indicate that transplantation of ADSCs, despite the lack of long-term significant cell engraftment, increases vessel density and prevents adverse remodeling in a clinically relevant model of myocardial infarction, strongly suggesting a paracrine-mediated effect. ADSCs thus constitute an attractive candidate for the treatment of myocardial infarction.


Biomaterials | 2014

Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction.

Miriam Araña; Juan J. Gavira; E. Peña; Arantxa González; Gloria Abizanda; Myriam Cilla; M. Pérez; Edurne Albiasu; Natalia Aguado; Mayte Casado; Begoña López; Susana González; Mario Soriano; Cristina Moreno; Juana Merino; José M. García-Verdugo; Javier Díez; M. Doblaré; Beatriz Pelacho; Felipe Prosper

Although transplantation of adipose-derived stem cells (ADSC) in chronic myocardial infarction (MI) models is associated with functional improvement, its therapeutic value is limited due to poor long-term cell engraftment and survival. Thus, the objective of this study was to examine whether transplantation of collagen patches seeded with ADSC could enhance cell engraftment and improve cardiac function in models of chronic MI. With that purpose, chronically infarcted Sprague-Dawley rats (n = 58) were divided into four groups and transplanted with media, collagen scaffold (CS), rat ADSC, or CS seeded with rat ADSC (CS-rADSC). Cell engraftment, histological changes, and cardiac function were assessed 4 months after transplantation. In addition, Göttingen minipigs (n = 18) were subjected to MI and then transplanted 2 months later with CS or CS seeded with autologous minipig ADSC (CS-pADSC). Functional and histological assessments were performed 3 months post-transplantation. Transplantation of CS-rADSC was associated with increased cell engraftment, significant improvement in cardiac function, myocardial remodeling, and revascularization. Moreover, transplantation of CS-pADSC in the pre-clinical swine model improved cardiac function and was associated with decreased fibrosis and increased vasculogenesis. In summary, transplantation of CS-ADSC resulted in enhanced cell engraftment and was associated with a significant improvement in cardiac function and myocardial remodeling.


Cell Transplantation | 2012

Adipose stromal vascular fraction improves cardiac function in chronic myocardial infarction through differentiation and paracrine activity.

Manuel Mazo; Arantxa Cemborain; Juan J. Gavira; Gloria Abizanda; Miriam Araña; Mayte Casado; Mario Soriano; Salomón Hernández; Cristina Moreno; Margarita Ecay; Edurne Albiasu; Miriam Belzunce; Josune Orbe; José A. Páramo; Juana Merino; Iván Peñuelas; José Manuel García Verdugo; Beatriz Pelacho; Felipe Prosper

Fresh adipose-derived cells have been shown to be effective in the treatment of acute myocardial infarction (MI), but their role in the chronic setting is unknown. We sought to determine the long-term effect of the adipose derived-stromal vascular fraction (SVF) cell transplantation in a rat model of chronic MI. MI was induced in 82 rats by permanent coronary artery ligation and 5 weeks later rats were allocated to receive an intramyocardial injection of 107 GFP-expressing fresh SVF cells or culture media as control. Heart function and tissue metabolism were determined by echocardiography and 18F-FDG-microPET, respectively, and histological studies were performed for up to 3 months after transplantation. SVF induced a statistically significant long-lasting (3 months) improvement in cardiac function and tissue metabolism that was associated with increased revascularization and positive heart remodeling, with a significantly smaller infarct size, thicker infarct wall, lower scar fibrosis, and lower cardiac hypertrophy. Importantly, injected cells engrafted and were detected in the treated hearts for at least 3 months, directly contributing to the vasculature and myofibroblasts and at negligible levels to cardiomyocytes. Furthermore, SVF release of angiogenic (VEGF and HGF) and proinflammatory (MCP-1) cytokines, as well as TIMP1 and TIMP4, was demonstrated in vitro and in vivo, strongly suggesting that they have a trophic effect. These results show the potential of SVF to contribute to the regeneration of ischemic tissue and to provide a long-term functional benefit in a rat model of chronic MI, by both direct and indirect mechanisms.


Stem Cells International | 2012

Mesenchymal Stem Cells and Cardiovascular Disease: A Bench to Bedside Roadmap

Manuel Mazo; Miriam Araña; Beatriz Pelacho; Felipe Prosper

In recent years, the incredible boost in stem cell research has kindled the expectations of both patients and physicians. Mesenchymal progenitors, owing to their availability, ease of manipulation, and therapeutic potential, have become one of the most attractive options for the treatment of a wide range of diseases, from cartilage defects to cardiac disorders. Moreover, their immunomodulatory capacity has opened up their allogenic use, consequently broadening the possibilities for their application. In this review, we will focus on their use in the therapy of myocardial infarction, looking at their characteristics, in vitro and in vivo mechanisms of action, as well as clinical trials.


Acta Biomaterialia | 2013

Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application.

Miriam Araña; E. Peña; Gloria Abizanda; Myriam Cilla; Ignacio Ochoa; Juan J. Gavira; Gaudencio Espinosa; M. Doblaré; Beatriz Pelacho; Felipe Prosper

The use of scaffolds composed of natural biodegradable matrices represents an attractive strategy to circumvent the lack of cell engraftment, a major limitation of stem cell therapy in cardiovascular diseases. Bovine-derived non-porous collagen scaffolds with different degrees of cross-linking (C0, C2, C5 and C10) were produced and tested for their mechanical behavior, in vitro biocompatibility with adipose-derived stem cells (ADSCs) and tissue adhesion and inflammatory reaction. Uniaxial tensile tests revealed an anisotropic behavior of collagen scaffolds (2×0.5cm) and statistically significant differences in the mechanical behavior between cross-linked and non-cross-linked scaffolds (n=5). In vitro, ADSCs adhered homogenously and showed a similar degree of proliferation on all four types of scaffolds (cells×10(3)cm(-2) at day 7: C0: 94.7±37.1; C2: 91.7±25.6; C5: 88.2±6.8; C10: 72.8±10.7; P=n.s.; n=3). In order to test the in vivo biocompatibility, a chronic myocardial infarction model was performed in rats and 1.2×1.2cm size collagen scaffolds implanted onto the heart 1month post-infarction. Six animals per group were killed 2, 7 and 30days after transplant. Complete and long-lasting adhesion to the heart was only observed with the non-cross-linked scaffolds with almost total degradation 1month post-transplantation. After 7 and 30days post-implantation, the degree of inflammation was significantly lower in the hearts treated with non-cross-linked scaffolds (day 7: C0: 10.2±2.1%; C2: 16.3±2.9%; C5: 15.9±4.8%; C10: 17.4±4.1%; P<0.05 vs. C0; day 30: C0: 1.3±1.3%; C2: 9.4±3.0%; C5: 7.0±2.1%; C10: 9.8±2.5%; P<0.01 vs. C0). In view of the results, the non-cross-linked scaffold (C0) was chosen as an ADSC-carrier sheet and tested in vivo. One week post-implantation, 25.3±7.0% of the cells transplanted were detected in those animals receiving the cell-carrier sheet whereas no cells were found in animals receiving cells alone (n=3 animals/group). We conclude that the biocompatibility and mechanical properties of the non-cross-linked collagen scaffolds make them a useful cell carrier that greatly favors tissue cell engraftment and may be exploited for cell transplantation in models of cardiac disease.


Stem Cells and Development | 2014

A Comparison of Electrospun Polymers Reveals Poly(3-Hydroxybutyrate) Fiber as a Superior Scaffold for Cardiac Repair

Delia Castellano; María Blanes; Bruno Marco; Inmaculada Cerrada; Amparo Ruiz-Sauri; Beatriz Pelacho; Miriam Araña; José Antonio Montero; Vicente Cambra; Felipe Prosper; Pilar Sepúlveda

The development of biomaterials for myocardial tissue engineering requires a careful assessment of their performance with regards to functionality and biocompatibility, including the immune response. Poly(3-hydroxybutyrate) (PHB), poly(e-caprolactone) (PCL), silk, poly-lactic acid (PLA), and polyamide (PA) scaffolds were generated by electrospinning, and cell compatibility in vitro, and immune response and cardiac function in vitro and in vivo were compared with a noncrosslinked collagen membrane (Col) control material. Results showed that cell adhesion and growth of mesenchymal stem cells, cardiomyocytes, and cardiac fibroblasts in vitro was dependent on the polymer substrate, with PHB and PCL polymers permitting the greatest adhesion/growth of cells. Additionally, polymer substrates triggered unique expression profiles of anti- and pro-inflammatory cytokines in human peripheral blood mononuclear cells. Implantation of PCL, silk, PLA, and PA patches on the epicardial surface of healthy rats induced a classical foreign body reaction pattern, with encapsulation of polymer fibers and induction of the nonspecific immune response, whereas Col and PHB patches were progressively degraded. When implanted on infarcted rat heart, Col, PCL, and PHB reduced negative remodeling, but only PHB induced significant angiogenesis. Importantly, Col and PHB modified the inflammatory response to an M2 macrophage phenotype in cardiac tissue, indicating a more beneficial reparative process and remodeling. Collectively, these results identify PHB as a superior substrate for cardiac repair.


Methods of Molecular Biology | 2013

Adipose Tissue-Derived Mesenchymal Stem Cells: Isolation, Expansion, and Characterization

Miriam Araña; Manuel Mazo; Pablo Aranda; Beatriz Pelacho; Felipe Prosper

Over the last decade, cell therapy has emerged as a potentially new approach for the treatment of cardiovascular diseases. Among the wide range of cell types and sources, adipose-derived mesenchymal stem cells have shown promise, mainly due to its plasticity and remarkable paracrine-secretion capacity, largely demonstrated at the in vitro and in vivo levels. Furthermore, its accessibility and abundance, the low morbidity of the surgical procedure, its easy isolation, culture, and long-term passaging capacity added to its immunomodulatory properties that could allow its allogeneic transplantation, making it one of the most attractive candidates for clinical application. In this chapter, we will focus on the methodology for the isolation, expansion, phenotypical characterization, differentiation, and storage of the adipose-derived stem cells.


Cell Transplantation | 2011

MAPC transplantation confers a more durable benefit than AC133+ cell transplantation in severe hind limb ischemia.

Xabier L. Aranguren; Beatriz Pelacho; Iván Peñuelas; Gloria Abizanda; Maialen Uriz; Margarita Ecay; Maria Collantaes; Miriam Araña; Manu Beerens; Giulia Coppiello; Inés Prieto; Maitane Pérez-Ilzarbe; Enrique J. Andreu; Aernout Luttun; Felipe Prosper

There is a need for comparative studies to determine which cell types are better candidates to remedy ischemia. Here, we compared human AC133+ cells and multipotent adult progenitor cells (hMAPC) in a mouse model reminiscent of critical limb ischemia. hMAPC or hAC133+ cell transplantation induced a significant improvement in tissue perfusion (measured by microPET) 15 days posttransplantation compared to controls. This improvement persisted for 30 days in hMAPC-treated but not in hAC133+-injected animals. While transplantation of hAC133+ cells promoted capillary growth, hMAPC transplantation also induced collateral expansion, decreased muscle necrosis/fibrosis, and improved muscle regeneration. Incorporation of differentiated hAC133+ or hMAPC progeny into new vessels was limited; however, a paracrine angio/arteriogenic effect was demonstrated in animals treated with hMAPC. Accordingly, hMAPC-conditioned, but not hAC133+-conditioned, media stimulated vascular cell proliferation and prevented myoblast, endothelial, and smooth muscle cell apoptosis in vitro. Our study suggests that although hAC133+ cell and hMAPC transplantation both contribute to vascular regeneration in ischemic limbs, hMAPC exert a more robust effect through trophic mechanisms, which translated into collateral and muscle fiber regeneration. This, in turn, conferred tissue protection and regeneration with longer term functional improvement.


Differentiation | 2016

Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells

Angelo Porciuncula; Anujith Kumar; Saray Rodriguez; Maher Atari; Miriam Araña; Franz Martín; Bernat Soria; Felipe Prosper; Catherine M. Verfaillie; Miguel Barajas

Efficient induction of defined lineages in pluripotent stem cells constitutes the determinant step for the generation of therapeutically relevant replacement cells to potentially treat a wide range of diseases, including diabetes. Pancreatic differentiation has remained an important challenge in large part because of the need to differentiate uncommitted pluripotent stem cells into highly specialized hormone-secreting cells, which has been shown to require a developmentally informed step-by-step induction procedure. Here, in the framework of using induced pluripotent stem cells (iPSCs) to generate pancreatic cells for pancreatic diseases, we have generated and characterized iPSCs from Pdx1-GFP transgenic mice. The use of a GFP reporter knocked into the endogenous Pdx1 promoter allowed us to monitor pancreatic induction based on the expression of Pdx1, a pancreatic master transcription factor, and to isolate a pure Pdx1-GFP+ population for downstream applications. Differentiated cultures timely expressed markers specific to each stage and end-stage progenies acquired a rather immature beta-cell phenotype, characterized by polyhormonal expression even among cells highly expressing the Pdx1-GFP reporter. Our findings highlight the utility of employing a fluorescent protein reporter under the control of a master developmental gene in order to devise novel differentiation protocols for relevant cell types for degenerative diseases such as pancreatic beta cells for diabetes.


Current Diabetes Reviews | 2017

Type 1 Diabetes Treatments Based on Stem Cells

Miriam Araña; Anujith Kumar; Ashwini Ashwathnarayan; Maher Atari; Miguel Barajas

BACKGROUND More than a decade ago, a new research field named Stem Cell Therapy emerged in Health Science. Initially, it was considered that cells owned a differentiation capability; however, this dogma has changed when new results have been published regarding the ability of the cells to differentiate into different cell tissue mainly due to the novel reprogramming strategies. Accordingly, cells from an adult tissue source may be potentially capable of originating cells of a very different cell type. The possibility of transplanting these cells into damaged organs has triggered many studies to understand the plasticity of stem cells. Today, we have a deeper knowledge about stem cells, however still many questions, especially about the mechanism of action, that needs to be answered. The benefit of stem cells after transplantation has been demonstrated experimentally and also in some cases clinically; however, the extent of stem cell contribution in transplanted tissue has been found to be low and a large number of evidence indicates that a trophic effect should play an important role in such benefit. A better understanding of the paracrine mechanisms involved in this process could be of great relevance in order to focus studies on endogenous cells to direct their function towards the regeneration of damaged tissue. In addition, even more sophisticated methods of reprogramming and cell transplantation have been initiated in combination with bioengineering techniques in order to enhance the potential of these cells. CONCLUSION In the present review, we will overview the studies on stem cell and their effects in the treatment of diabetes in order to discuss the questions generated about their origin and the mechanisms that are involved in their reparative properties.

Collaboration


Dive into the Miriam Araña's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Barajas

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aernout Luttun

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge