Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miriam Cnop is active.

Publication


Featured researches published by Miriam Cnop.


Journal of Cell Science | 2008

Initiation and execution of lipotoxic ER stress in pancreatic beta-cells.

Daniel Andrade Da Cunha; Paul Hekerman; Laurence Ladrière; Angie Bazarra-Castro; Fernanda Ortis; Marion C. Wakeham; Fabrice Moore; Joanne Rasschaert; Alessandra K Cardozo; Elisa A. Bellomo; Lutgart Overbergh; Chantal Mathieu; R Lupi; Tsonwin Hai; André Herchuelz; Piero Marchetti; Guy A. Rutter; Decio L. Eizirik; Miriam Cnop

Free fatty acids (FFA) cause apoptosis of pancreatic β-cells and might contribute to β-cell loss in type 2 diabetes via the induction of endoplasmic reticulum (ER) stress. We studied here the molecular mechanisms implicated in FFA-induced ER stress initiation and apoptosis in INS-1E cells, FACS-purified primary β-cells and human islets exposed to oleate and/or palmitate. Treatment with saturated and/or unsaturated FFA led to differential ER stress signaling. Palmitate induced more apoptosis and markedly activated the IRE1, PERK and ATF6 pathways, owing to a sustained depletion of ER Ca2+ stores, whereas the unsaturated FFA oleate led to milder PERK and IRE1 activation and comparable ATF6 signaling. Non-metabolizable methyl-FFA analogs induced neither ER stress nor β-cell apoptosis. The FFA-induced ER stress response was not modified by high glucose concentrations, suggesting that ER stress in primary β-cells is primarily lipotoxic, and not glucolipotoxic. Palmitate, but not oleate, activated JNK. JNK inhibitors reduced palmitate-mediated AP-1 activation and apoptosis. Blocking the transcription factor CHOP delayed palmitate-induced β-cell apoptosis. In conclusion, saturated FFA induce ER stress via ER Ca2+ depletion. The IRE1 and resulting JNK activation contribute to β-cell apoptosis. PERK activation by palmitate also contributes to β-cell apoptosis via CHOP.


Trends in Molecular Medicine | 2012

Endoplasmic reticulum stress, obesity and diabetes

Miriam Cnop; Fabienne Foufelle; Lício A. Velloso

The endoplasmic reticulum (ER) stress response, also commonly known as the unfolded protein response (UPR), is an adaptive response used to align ER functional capacity with demand. It is activated in various tissues under conditions related to obesity and type 2 diabetes. Hypothalamic ER stress contributes to inflammation and leptin/insulin resistance. Hepatic ER stress contributes to the development of steatosis and insulin resistance, and components of the UPR regulate liver lipid metabolism. ER stress in enlarged fat tissues induces inflammation and modifies adipokine secretion, and saturated fats cause ER stress in muscle. Finally, prolonged ER stress impairs insulin synthesis and causes pancreatic β cell apoptosis. In this review, we discuss ways in which ER stress operates as a common molecular pathway in the pathogenesis of obesity and diabetes.


The EMBO Journal | 2012

DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients

Michael Volkmar; Sarah Dedeurwaerder; Daniel Andrade Da Cunha; Matladi N. Ndlovu; Matthieu Defrance; Rachel Deplus; Emilie Calonne; Ute Volkmar; Mariana Igoillo-Esteve; Najib Naamane; Silvia Del Guerra; Matilde Masini; Marco Bugliani; Piero Marchetti; Miriam Cnop; Decio L. Eizirik; François Fuks

In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non‐diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non‐diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in β‐cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.


Journal of Biological Chemistry | 2006

Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis.

Miriam Cnop; Laurence Ladrière; Paul Hekerman; Fernanda Ortis; Alessandra K Cardozo; Zeynep Dogusan; Daisy Flamez; Michael Boyce; Junying Yuan; Decio L. Eizirik

Free fatty acids cause pancreatic β-cell apoptosis and may contribute to β-cell loss in type 2 diabetes via the induction of endoplasmic reticulum stress. Reductions in eukaryotic translation initiation factor (eIF) 2α phosphorylation trigger β-cell failure and diabetes. Salubrinal selectively inhibits eIF2α dephosphorylation, protects other cells against endoplasmic reticulum stress-mediated apoptosis, and has been proposed as a β-cell protector. Unexpectedly, salubrinal induced apoptosis in primary β-cells, and it potentiated the deleterious effects of oleate and palmitate. Salubrinal induced a marked eIF2α phosphorylation and potentiated the inhibitory effects of free fatty acids on protein synthesis and insulin release. The synergistic activation of the PERK-eIF2α branch of the endoplasmic reticulum stress response, but not of the IRE1 and activating transcription factor-6 pathways, led to a marked induction of activating transcription factor-4 and the pro-apoptotic transcription factor CHOP. Our findings demonstrate that excessive eIF2α phosphorylation is poorly tolerated by β-cells and exacerbates free fatty acid-induced apoptosis. This modifies the present paradigm regarding the beneficial role of eIF2α phosphorylation in β-cells and must be taken into consideration when designing therapies to protect β-cells in type 2 diabetes.


PLOS Genetics | 2012

The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines

Decio L. Eizirik; Michael Sammeth; Thomas Bouckenooghe; Guy Bottu; Giorgia Sisino; Mariana Igoillo-Esteve; Fernanda Ortis; Izortze Santin; Maikel L Colli; Jenny Barthson; Luc Bouwens; Linda Hughes; Lorna Gregory; Gerton Lunter; Lorella Marselli; Piero Marchetti; Mark I. McCarthy; Miriam Cnop

Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic beta cells are killed by infiltrating immune cells and by cytokines released by these cells. Signaling events occurring in the pancreatic beta cells are decisive for their survival or death in diabetes. We have used RNA sequencing (RNA–seq) to identify transcripts, including splice variants, expressed in human islets of Langerhans under control conditions or following exposure to the pro-inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ). Based on this unique dataset, we examined whether putative candidate genes for T1D, previously identified by GWAS, are expressed in human islets. A total of 29,776 transcripts were identified as expressed in human islets. Expression of around 20% of these transcripts was modified by pro-inflammatory cytokines, including apoptosis- and inflammation-related genes. Chemokines were among the transcripts most modified by cytokines, a finding confirmed at the protein level by ELISA. Interestingly, 35% of the genes expressed in human islets undergo alternative splicing as annotated in RefSeq, and cytokines caused substantial changes in spliced transcripts. Nova1, previously considered a brain-specific regulator of mRNA splicing, is expressed in islets and its knockdown modified splicing. 25/41 of the candidate genes for T1D are expressed in islets, and cytokines modified expression of several of these transcripts. The present study doubles the number of known genes expressed in human islets and shows that cytokines modify alternative splicing in human islet cells. Importantly, it indicates that more than half of the known T1D candidate genes are expressed in human islets. This, and the production of a large number of chemokines and cytokines by cytokine-exposed islets, reinforces the concept of a dialog between pancreatic islets and the immune system in T1D. This dialog is modulated by candidate genes for the disease at both the immune system and beta cell level.


Diabetes | 2009

Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB

Daniel Andrade Da Cunha; Laurence Ladrière; Fernanda Ortis; Mariana Igoillo-Esteve; Esteban Nicolas Gurzov; R Lupi; Piero Marchetti; Decio L. Eizirik; Miriam Cnop

OBJECTIVE Chronic exposure of pancreatic β-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to β-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of β-cells from lipotoxic ER stress by glucagon-like peptide (GLP)-1 agonists utilized in the treatment of type 2 diabetes. RESEARCH DESIGN AND METHODS INS-1E or fluorescence-activated cell sorter–purified primary rat β-cells were exposed to oleate or palmitate with or without the GLP-1 agonist exendin-4 or forskolin. Cyclopiazonic acid was used as a synthetic ER stressor, while the activating transcription factor 4–C/EBP homologous protein branch was selectively activated with salubrinal. The ER stress signaling pathways modulated by GLP-1 agonists were studied by real-time PCR and Western blot. Knockdown by RNA interference was used to identify mediators of the antiapoptotic GLP-1 effects in the ER stress response and downstream mitochondrial cell death mechanisms. RESULTS Exendin-4 and forskolin protected β-cells against FFAs via the induction of the ER chaperone BiP and the antiapoptotic protein JunB that mediate β-cell survival under lipotoxic conditions. On the other hand, exendin-4 and forskolin protected against synthetic ER stressors by inactivating caspase 12 and upregulating Bcl-2 and X-chromosome–linked inhibitor of apoptosis protein that inhibit mitochondrial apoptosis. CONCLUSIONS These observations suggest that GLP-1 agonists increase in a context-dependent way the β-cell defense mechanisms against different pathways involved in ER stress–induced apoptosis. The identification of the pathways modulated by GLP-1 agonists allows for targeted approaches to alleviate β-cell ER stress in diabetes.


Diabetes | 2009

PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis

Fabrice Moore; Maikel L Colli; Miriam Cnop; Mariana Igoillo Esteve; Alessandra K Cardozo; Daniel Andrade Da Cunha; Marco Bugliani; Piero Marchetti; Decio L. Eizirik

OBJECTIVE The pathogenesis of type 1 diabetes has a strong genetic component. Genome-wide association scans recently identified novel susceptibility genes including the phosphatases PTPN22 and PTPN2. We hypothesized that PTPN2 plays a direct role in β-cell demise and assessed PTPN2 expression in human islets and rat primary and clonal β-cells, besides evaluating its role in cytokine-induced signaling and β-cell apoptosis. RESEARCH DESIGN AND METHODS PTPN2 mRNA and protein expression was evaluated by real-time PCR and Western blot. Small interfering (si)RNAs were used to inhibit the expression of PTPN2 and downstream STAT1 in β-cells, allowing the assessment of cell death after cytokine treatment. RESULTS PTPN2 mRNA and protein are expressed in human islets and rat β-cells and upregulated by cytokines. Transfection with PTPN2 siRNAs inhibited basal- and cytokine-induced PTPN2 expression in rat β-cells and dispersed human islets cells. Decreased PTPN2 expression exacerbated interleukin (IL)-1β + interferon (IFN)-γ–induced β-cell apoptosis and turned IFN-γ alone into a proapoptotic signal. Inhibition of PTPN2 amplified IFN-γ–induced STAT1 phosphorylation, whereas double knockdown of both PTPN2 and STAT1 protected β-cells against cytokine-induced apoptosis, suggesting that STAT1 hyperactivation is responsible for the aggravation of cytokine-induced β-cell death in PTPN2-deficient cells. CONCLUSIONS We identified a functional role for the type 1 diabetes candidate gene PTPN2 in modulating IFN-γ signal transduction at the β-cell level. PTPN2 regulates cytokine-induced apoptosis and may thereby contribute to the pathogenesis of type 1 diabetes.


Diabetes, Obesity and Metabolism | 2010

Causes and cures for endoplasmic reticulum stress in lipotoxic β-cell dysfunction.

Miriam Cnop; Laurence Ladrière; Mariana Igoillo-Esteve; Rodrigo F. Moura; Daniel Andrade Da Cunha

Pancreatic β‐cell dysfunction is central to the pathogenesis of type 2 diabetes, and the loss of functional β‐cell mass in type 2 diabetes is at least in part secondary to increased β‐cell apoptosis. Accumulating evidence suggests that endoplasmic reticulum (ER) stress is present in β‐cells in type 2 diabetes. Free fatty acids (FFAs) cause ER stress and are putative mediators of β‐cell dysfunction and death. In this review, we discuss the molecular mechanisms underlying ER stress induced by saturated and unsaturated FFAs. Oleate and palmitate trigger ER stress through ER Ca2+ depletion and build‐up of unfolded proteins in the secretory pathway. Saturated and unsaturated FFAs elicit a differential signal transduction in the three branches of the ER stress response, resulting in different survival/apoptosis outcomes. The protection of β‐cells against FFAs through the interference with ER stress signalling has opened novel therapeutic perspectives for type 2 diabetes. Chemical chaperones, salubrinal and glucagon‐like peptide‐1 (GLP‐1) analogues have been used to protect β‐cells from lipotoxic ER stress. Importantly, the pro‐ and antiapoptotic effects of these compounds are cell and context dependent.


Science Signaling | 2010

ER stress in pancreatic beta cells: the thin red line between adaptation and failure.

Decio L. Eizirik; Miriam Cnop

The response of IRE1α to metabolic ER stress is modulated by its interaction with RACK1. Secretory cells, such as pancreatic β cells, face the challenge of increasing protein synthesis severalfold during acute or chronic stimulation. This poses a burden on the endoplasmic reticulum (ER), the organelle where proinsulin synthesis and folding takes place. Thus, β cells use various adaptive mechanisms to adjust the functional capacity of the ER to the prevailing demand. These check-and-balance mechanisms are collectively known as the unfolded protein response (UPR). It remains unclear how UPR signaling is ultimately regulated and what delineates the boundaries between a physiological and a pathological response. New discoveries point to the divergent effects of acute and chronic metabolic fluxes and chemical ER stressors on the formation of complexes among UPR transducers, scaffold proteins, and phosphatases. These and other findings provide a first glimpse on how different signals trigger diverging UPR outcomes.


Diabetes | 2007

Transcriptional Regulation of the Endoplasmic Reticulum Stress Gene Chop in Pancreatic Insulin-Producing Cells

Pierre Pirot; Fernanda Ortis; Miriam Cnop; Yanjun Ma; Linda M. Hendershot; Decio L. Eizirik; Alessandra K Cardozo

Endoplasmic reticulum stress–mediated apoptosis may play an important role in the destruction of pancreatic β-cells, thus contributing to the development of type 1 and type 2 diabetes. One of the regulators of endoplasmic reticulum stress–mediated cell death is the CCAAT/enhancer binding protein (C/EBP) homologous protein (Chop). We presently studied the molecular regulation of Chop expression in insulin-producing cells (INS-1E) in response to three pro-apoptotic and endoplasmic reticulum stress–inducing agents, namely the cytokines interleukin-1β + interferon-γ, the free fatty acid palmitate, and the sarcoendoplasmic reticulum pump Ca2+ ATPase blocker cyclopiazonic acid (CPA). Detailed mutagenesis studies of the Chop promoter showed differential regulation of Chop transcription by CPA, cytokines, and palmitate. Whereas palmitate- and cytokine-induced Chop expression was mediated via a C/EBP–activating transcription factor (ATF) composite and AP-1 binding sites, CPA induction required the C/EBP-ATF site and the endoplasmic reticulum stress response element. Cytokines, palmitate, and CPA induced eIF2α phosphorylation in INS-1E cells leading to activation of the transcription factor ATF4. Chop transcription in response to cytokines and palmitate depends on the binding of ATF4 and AP-1 to the Chop promoter, but distinct AP-1 dimers were formed by cytokines and palmitate. These results suggest a differential response of β-cells to diverse endoplasmic reticulum stress inducers, leading to a differential regulation of Chop transcription.

Collaboration


Dive into the Miriam Cnop's collaboration.

Top Co-Authors

Avatar

Decio L. Eizirik

Aarhus University Hospital

View shared research outputs
Top Co-Authors

Avatar

Piero Marchetti

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mariana Igoillo-Esteve

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Daniel Andrade Da Cunha

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Laurence Ladrière

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chantal Mathieu

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Steven E. Kahn

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Alessandra K Cardozo

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge