Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miriam Verwei is active.

Publication


Featured researches published by Miriam Verwei.


European Journal of Pharmaceutical Sciences | 2014

In vitro models for the prediction of in vivo performance of oral dosage forms.

Edmund S. Kostewicz; Bertil Abrahamsson; Marcus E. Brewster; Joachim Brouwers; James Butler; Sara Carlert; Paul A. Dickinson; Jennifer B. Dressman; René Holm; Sandra Klein; James Mann; Mark McAllister; Mans Minekus; Uwe Muenster; Anette Müllertz; Miriam Verwei; Maria Vertzoni; Werner Weitschies; Patrick Augustijns

Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract.


Toxicological Sciences | 2010

The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man.

Jochem Louisse; Esther de Jong; Johannes J.M. van de Sandt; Bas J. Blaauboer; Ruud A. Woutersen; Aldert H. Piersma; Ivonne M. C. M. Rietjens; Miriam Verwei

At present, regulatory assessment of systemic toxicity is almost solely carried out using animal models. The European Commissions REACH legislation stimulates the use of animal-free approaches to obtain information on the toxicity of chemicals. In vitro toxicity tests provide in vitro concentration-response curves for specific target cells, whereas in vivo dose-response curves are regularly used for human risk assessment. The present study shows an approach to predict in vivo dose-response curves for developmental toxicity by combining in vitro toxicity data and in silico kinetic modeling. A physiologically based kinetic (PBK) model was developed, describing the kinetics of four glycol ethers and their embryotoxic alkoxyacetic acid metabolites in rat and man. In vitro toxicity data of these metabolites derived in the embryonic stem cell test were used as input in the PBK model to extrapolate in vitro concentration-response curves to predicted in vivo dose-response curves for developmental toxicity of the parent glycol ethers in rat and man. The predicted dose-response curves for rat were found to be in concordance with the embryotoxic dose levels measured in reported in vivo rat studies. Therefore, predicted dose-response curves for rat could be used to set a point of departure for deriving safe exposure limits in human risk assessment. Combining the in vitro toxicity data with a human PBK model allows the prediction of dose-response curves for human developmental toxicity. This approach could therefore provide a means to reduce the need for animal testing in human risk assessment practices.


European Journal of Pharmaceutical Sciences | 2014

Oral biopharmaceutics tools – Time for a new initiative – An introduction to the IMI project OrBiTo

Hans Lennernäs; Leon Aarons; Patrick Augustijns; Stefania Beato; Michael B. Bolger; Karl Box; Marcus E. Brewster; James Butler; Jennifer B. Dressman; René Holm; K Julia Frank; R Kendall; Peter Langguth; J Sydor; Anders Lindahl; Mark McAllister; Uwe Muenster; Anette Müllertz; Krista Ojala; Xavier Pepin; Christos Reppas; Amin Rostami-Hodjegan; Miriam Verwei; Werner Weitschies; Clive G. Wilson; C Karlsson; Bertil Abrahamsson

OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharmaceutics tools will be performed using active pharmaceutical ingredient (API), formulations and supporting datasets from industry partners. A combination of high quality in vitro or in silico characterizations of API and formulations will be integrated into physiologically based in silico biopharmaceutics models capturing the full complexity of GI drug absorption. This approach gives an unparalleled opportunity to initiate a transformational change in industrial research and development to achieve model-based pharmaceutical product development in accordance with the Quality by Design concept. Benefits include an accelerated and more efficient drug candidate selection, formulation development process, particularly for challenging projects such as low solubility molecules (BCS II and IV), enhanced and modified-release formulations, as well as allowing optimization of clinical product performance for patient benefit. In addition, the tools emerging from OrBiTo are expected to significantly reduce demand for animal experiments in the future as well as reducing the number of human bioequivalence studies required to bridge formulations after manufacturing or composition changes.


Toxicological Sciences | 2009

Relative Developmental Toxicity of Glycol Ether Alkoxy Acid Metabolites in the Embryonic Stem Cell Test as compared with the In Vivo Potency of their Parent Compounds

Esther de Jong; Jochem Louisse; Miriam Verwei; Bas J. Blaauboer; Johannes J.M. van de Sandt; Ruud A. Woutersen; Ivonne M. C. M. Rietjens; Aldert H. Piersma

The embryonic stem cell test (EST) has been proposed as an in vitro assay that might reduce animal experimentation in regulatory developmental toxicology. So far, evaluation of the EST was not performed using compounds within distinct chemical classes. Evaluation within a distinct class of chemically related compounds can define the usefulness of the assay for the chemical class tested. The aim of the present study was to evaluate the relative sensitivity of the EST for a selected series of homologous compounds and to compare the data to the relative developmental toxicity of the compounds in vivo. To this end a series of proximate developmentally toxic glycol ether alkoxy acid metabolites was tested in the EST. All glycol ether alkoxy acid metabolites tested showed a concentration-dependent inhibition of cardiomyocyte differentiation at noncytotoxic concentrations, with methoxyacetic acid as the most potent compound followed by ethoxyacetic acid, butoxyacetic acid, and phenoxyacetic acid, respectively. The potency ranking of the compounds in the EST corresponds with the available in vivo data. The relative differences between the potencies of the compounds appeared more pronounced in the in vivo studies than in the EST. A possible explanation for this discrepancy could be the difference in the kinetics of the compounds in vivo as compared with their in vitro kinetics. This study illustrates that the EST can be used to set priorities for developmental toxicity testing within classes of related compounds.


Drug Metabolism and Disposition | 2013

Drug-drug interactions between rosuvastatin and oral antidiabetic drugs occurring at the level of OATP1B1

E. van de Steeg; Rick Greupink; M. Schreurs; Irene H.G. Nooijen; Kitty C.M. Verhoeckx; R. Hanemaaijer; D. Ripken; M. Monshouwer; M.L.H. Vlaming; Jeroen DeGroot; Miriam Verwei; Frans G. M. Russel; Maarten T. Huisman; Heleen M. Wortelboer

Organic anion–transporting polypeptide 1B1 (OATP1B1) is an important hepatic uptake transporter, of which the polymorphic variant OATP1B1*15 (Asn130Asp and Val174Ala) has been associated with decreased transport activity. Rosuvastatin is an OATP1B1 substrate and often concomitantly prescribed with oral antidiabetics in the clinic. The aim of this study was to investigate possible drug-drug interactions between these drugs at the level of OATP1B1 and OATP1B1*15. We generated human embryonic kidney (HEK)293 cells stably overexpressing OATP1B1 or OATP1B1*15 that showed similar protein expression levels of OATP1B1 and OATP1B1*15 at the cell membrane as measured by liquid chromatography-tandem mass spectrometry. In HEK-OATP1B1*15 cells, the Vmax for OATP1B1-mediated transport of E217β-G (estradiol 17β-d-glucuronide) was decreased >60%, whereas Km values (Michaelis constant) were comparable. Uptake of rosuvastatin in HEK-OATP1B1 cells (Km 13.1 ± 0.43 μM) was nearly absent in HEK-OATP1B1*15 cells. Interestingly, several oral antidiabetics (glyburide, glimepiride, troglitazone, pioglitazone, glipizide, gliclazide, and tolbutamide), but not metformin, were identified as significant inhibitors of the OATP1B1-mediated transport of rosuvastatin. The IC50 values for inhibition of E217β-G uptake were similar between OATP1B1 and OATP1B1*15. In conclusion, these studies indicate that several oral antidiabetic drugs affect the OATP1B1-mediated uptake of rosuvastatin in vitro. The next step will be to translate these data to the clinical situation, as it remains to be established whether the studied oral antidiabetics indeed affect the clinical pharmacokinetic profile of rosuvastatin in patients.


European Journal of Pharmaceutical Sciences | 2014

Predicting carrier-mediated hepatic disposition of rosuvastatin in man by scaling from individual transfected cell-lines in vitro using absolute transporter protein quantification and PBPK modeling

Sieto Bosgra; Evita van de Steeg; M.L.H. Vlaming; Kitty C.M. Verhoeckx; Maarten T. Huisman; Miriam Verwei; Heleen M. Wortelboer

In contrast to primary hepatocytes, estimating carrier-mediated hepatic disposition by using a panel of single transfected cell-lines provides direct information on the contribution of the individual transporters to the net disposition. The most direct way to correct for differences in transporter abundance between cell-lines and tissue is by using absolute protein quantification. In the present study, the performance of this strategy to predict human hepatic uptake transport was investigated and compared with traditional scaling from primary human hepatocytes. Rosuvastatin was used as a model compound. The uptake activity was measured in HEK293 cell-lines stably overexpressing OATP1B1(∗)1a, OATP1B3 or OATP2B1, the major transporters involved in human hepatic uptake of rosuvastatin, or expressing OATP1B1(∗)15, associated with reduced hepatic uptake of rosuvastatin. The abundance of these transporter proteins in the outer membranes of HEK293-cells, in human primary hepatocytes and in human liver tissue was determined by LC-MS/MS. The measured activity, corrected for protein abundance and scaled to the whole liver, gave a very accurate prediction of the hepatic intrinsic clearance observed in vivo. Embedded in a PBPK model describing the hepatic disposition and enterohepatic circulation, the collective in vitro data resulted in a good explanation of the observed oral and intravenous pharmacokinetic profiles of rosuvastatin. The model allowed simulation of the effect of polymorphic variants of OATP1B1 on rosuvastatin pharmacokinetics. These results encourage a larger scale validation. This approach may facilitate prediction of drug-drug interactions, scaling of transporter processes across subpopulations (children, diseased patients), and may be extended to tissues for which primary cells may be more difficult to obtain.


European Journal of Pharmaceutical Sciences | 2014

A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices

Joost Westerhout; Evita van de Steeg; Dimitri Grossouw; Evelijn E. Zeijdner; Cyrille Krul; Miriam Verwei; Heleen M. Wortelboer

A reliable prediction of the oral bioavailability in humans is crucial and of high interest for pharmaceutical and food industry. The predictive value of currently used in silico methods, in vitro cell lines, ex vivo intestinal tissue and/or in vivo animal studies for human intestinal absorption, however, is often insufficient, especially when food-drug interactions are evaluated. Ideally, for this purpose healthy human intestinal tissue is used, but due to its limited availability there is a need for alternatives. The aim of this study was to evaluate the applicability of healthy porcine intestinal tissue mounted in a newly developed InTESTine™ system to predict human intestinal absorption of compounds with different chemical characteristics, and within biorelevant matrices. To that end, first, a representative set of compounds was chosen of which the apparent permeability (Papp) data in both Caco-2 cells and human intestinal tissue mounted in the Ussing chamber system, and absolute human oral bioavailability were reported. Thereafter, Papp values of the subset were determined in both porcine jejunal tissue and our own Caco-2 cells. In addition, the feasibility of this new approach to study regional differences (duodenum, jejunum, and ileum) in permeability of compounds and to study the effects of luminal factors on permeability was also investigated. For the latter, a comparison was made between the compatibility of porcine intestinal tissue, Caco-2 cells, and Caco-2 cells co-cultured with the mucin producing HT29-MTX cells with biorelevant samples as collected from an in vitro dynamic gastrointestinal model (TIM). The results demonstrated that for the paracellularly transported compounds atenolol, cimetidine, mannitol and ranitidine porcine Papp values are within 3-fold difference of human Papp values, whereas the Caco-2 Papp values are beyond 3-fold difference. Overall, the porcine intestinal tissue Papp values are more comparable to human Papp values (9 out of 12 are within 3-fold difference), compared to Caco-2 Papp values (4 out of 12 are within 3-fold difference). In addition, for the selected hydrophilic compounds a significant increase in the permeability was observed from duodenum to ileum. Finally, this study indicated that porcine jejunal tissue segments can be used with undiluted luminal samples to predict human intestinal permeability and the effect of biorelevant matrices on this. In conclusion, viable porcine intestinal tissue mounted in the InTESTine™ system can be applied as a reliable tool for the assessment of intestinal permeability in the absence and presence of biorelevant samples. This would enable an accessible opportunity for a reliable prediction of human intestinal absorption, and the effect of luminal compounds such as digested foods, early in drug development.


Expert Opinion on Drug Metabolism & Toxicology | 2012

Toward in vitro biomarkers for developmental toxicity and their extrapolation to the in vivo situation

Jochem Louisse; Miriam Verwei; Ruud A. Woutersen; Bas J. Blaauboer; Ivonne M. C. M. Rietjens

Introduction: Reliable in vitro and in silico assays as alternatives for in vivo developmental toxicity studies are urgently needed, for the replacement, reduction and refinement (3Rs) of animal use in toxicological research. Therefore, relevant biomarkers for in vivo developmental toxicity in in vitro assays are needed. Areas covered: The present review gives an overview of alternative assays, as described in literature, for in vivo developmental toxicity, including the effects (readouts) assessed in these assays. The authors discuss how these data may be used to obtain relevant biomarkers for in vivo developmental toxicity, and how in vitro effect data can be translated to the in vivo situation using physiologically based kinetic (PBK) modeling. Expert opinion: Relevance of readouts in in vitro developmental toxicity assays as predictive biomarkers for in vivo developmental toxicity should be evaluated by comparing the obtained in vitro effect concentrations with in vivo internal concentrations at dose levels causing developmental toxicity. Extrapolation of the in vitro effect concentrations to in vivo dose levels using PBK modeling (i.e., reverse dosimetry) is promising in its use to derive points of departure for risk assessment, enabling the use of in vitro toxicity data in the safety assessment of compounds.


International Journal of Pharmaceutics | 2016

Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms

Miriam Verwei; Mans Minekus; Evelijn Zeijdner; Ronald Schilderink; Robert Havenaar

Pharmaceutical research needs predictive in vitro tools for API bioavailability in humans. We evaluated two dynamic in vitro gastrointestinal models: TIM-1 and tiny-TIM. Four low-soluble APIs in various formulations were investigated in the TIM systems under fasted and fed conditions. API small-intestinal bioaccessibility profiles were evaluated between the two systems and in comparison with human data. Both TIM systems showed a higher bioaccessibility of ciprofloxacin and nifedipine during 3-4h after dosing immediate release (IR) compared to modified release (MR) formulations. Higher bioaccessibility levels from IR formulations were observed under fasted state in the first 30-90 min in tiny-TIM as compared to TIM-1, resulting in a tmax similar to clinical data. Absence (ciprofloxacin) or presence (posaconazole) of a food effect on bioaccessibility was observed in both TIM systems in line with human data. A higher bioaccessibility of fenofibrate from nano- vs micro-particle formulation was found in both TIM systems. This dataset shows the predictive quality of the TIM systems for clinical data on API small-intestinal bioaccessibility from IR and MR formulations and food effects. Tiny-TIM provides higher throughput and better prediction for IR formulations. TIM-1 provides detailed information on site-specific release of APIs, relevant for MR formulations and food effects.


Toxicology Letters | 2011

Relative developmental toxicity potencies of retinoids in the embryonic stem cell test compared with their relative potencies in in vivo and two other in vitro assays for developmental toxicity

Jochem Louisse; Süleyman Gönen; Ivonne M. C. M. Rietjens; Miriam Verwei

The present study determines the relative developmental toxicity potencies of retinoids in the embryonic stem (ES)-D3 cell differentiation assay of the embryonic stem cell test, and compares the outcomes with their relative potencies in in vivo and two other in vitro assays for developmental toxicity. The results reveal that the potency ranking obtained in the ES-D3 cell differentiation assay is similar to the reported potency rankings in the two other in vitro assays for developmental toxicity. TTNPB ((E)-4[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid) was the most potent retinoid, whereas etretinate and retinol had the lowest potency. All-trans-retinoic acid, 13-cis-retinoic acid, 9-cis-retinoic acid and acitretin showed an intermediate potency. In vivo potency rankings of the developmental toxicity of retinoids appear to be dependent on the species and/or exposure regimens used. The obtained in vitro potency ranking does not completely correspond with the in vivo potency rankings, although TTNPB is correctly predicted to be the most potent and retinol the least potent congener. The lack of in vivo kinetic processes in the ES-D3 cell differentiation assay might explain the deviating potency predictions of some retinoids. Therefore, knowledge on the species-dependent in vivo kinetics is essential when using in vitro toxicity data for the estimation of in vivo developmental toxicity potencies within series of related compounds.

Collaboration


Dive into the Miriam Verwei's collaboration.

Top Co-Authors

Avatar

Ivonne M. C. M. Rietjens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jochem Louisse

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruud A. Woutersen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.J.M. van de Sandt

Organisation for Economic Co-operation and Development

View shared research outputs
Top Co-Authors

Avatar

Andreas P. Freidig

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge