Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirjana Bozic is active.

Publication


Featured researches published by Mirjana Bozic.


Language and Cognitive Processes | 2008

Early decomposition in visual word recognition: Dissociating morphology, form, and meaning

William D. Marslen-Wilson; Mirjana Bozic; Billi Randall

The role of morphological, semantic, and form-based factors in the early stages of visual word recognition was investigated across different SOAs in a masked priming paradigm, focusing on English derivational morphology. In a first set of experiments, stimulus pairs co-varying in morphological decomposability and in semantic and orthographic relatedness were presented at three SOAs (36, 48, and 72 ms). No effects of orthographic relatedness were found at any SOA. Semantic relatedness did not interact with effects of morphological decomposability, which came through strongly at all SOAs, even for pseudo-suffixed pairs such as archer-arch. Derivational morphological effects in masked priming seem to be primarily driven by morphological decomposability at an early stage of visual word recognition, and are independent of semantic factors. A second experiment reversed the order of prime and target (stem-derived rather than derived-stem), and again found that morphological priming did not interact with semantic relatedness. This points to an early segmentation process that is driven by morphological decomposability and not by the structure or content of central lexical representations.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Bihemispheric foundations for human speech comprehension

Mirjana Bozic; Lorraine K. Tyler; David T. Ives; Billi Randall; William D. Marslen-Wilson

Emerging evidence from neuroimaging and neuropsychology suggests that human speech comprehension engages two types of neurocognitive processes: a distributed bilateral system underpinning general perceptual and cognitive processing, viewed as neurobiologically primary, and a more specialized left hemisphere system supporting key grammatical language functions, likely to be specific to humans. To test these hypotheses directly we covaried increases in the nonlinguistic complexity of spoken words [presence or absence of an embedded stem, e.g., claim (clay)] with variations in their linguistic complexity (presence of inflectional affixes, e.g., play+ed). Nonlinguistic complexity, generated by the on-line competition between the full word and its onset-embedded stem, was found to activate both right and left fronto-temporal brain regions, including bilateral BA45 and -47. Linguistic complexity activated left-lateralized inferior frontal areas only, primarily in BA45. This contrast reflects a differentiation between the functional roles of a bilateral system, which supports the basic mapping from sound to lexical meaning, and a language-specific left-lateralized system that supports core decompositional and combinatorial processes invoked by linguistically complex inputs. These differences can be related to the neurobiological foundations of human language and underline the importance of bihemispheric systems in supporting the dynamic processing and interpretation of spoken inputs.


Journal of Cognitive Neuroscience | 2007

Differentiating Morphology, Form, and Meaning: Neural Correlates of Morphological Complexity

Mirjana Bozic; William D. Marslen-Wilson; Emmanuel A. Stamatakis; Matthew H. Davis; Lorraine K. Tyler

The role of morphological structure in word recognition raises issues about the nature and structure of the language system. One major issue is whether morphological factors provide an independent principle for lexical organization and processing, or whether morphological effects can be reduced to the joint contribution of form and meaning. The independence of form, meaning, and morphological structure can be directly investigated using derivationally complex words, because derived words can share form but need not share meaning (e.g., archer-arch). We used an event-related functional magnetic resonance imaging paradigm to investigate priming between pairs of words that potentially shared a stem, where this link was either semantically transparent (e.g., bravely-brave) or opaque (e.g., archer-arch). These morphologically related pairs were contrasted with identity priming (e.g., mist-mist) and priming for pairs of words that shared only form (e.g., scandal-scan) or meaning (e.g., accuse-blame). Morphologically related words produced significantly reduced activation in left frontal regions, whether the pairs were semantically transparent or opaque. The effect was not found for any of the control conditions (identity, form, or meaning). Morphological effects were observed separately from processing form and meaning and we propose that they reflect segmentation of complex derived words, a process triggered by surface morphological structure of complex words.


Journal of Cognitive Neuroscience | 2013

Neurobiological systems for lexical representation and analysis in english

Mirjana Bozic; Lorraine K. Tyler; Li Su; Cai Wingfield; William D. Marslen-Wilson

Current research suggests that language comprehension engages two joint but functionally distinguishable neurobiological processes: a distributed bilateral system, which supports general perceptual and interpretative processes underpinning speech comprehension, and a left hemisphere (LH) frontotemporal system, selectively tuned to the processing of combinatorial grammatical sequences, such as regularly inflected verbs in English [Marslen-Wilson, W. D., & Tyler, L. K. Morphology, language and the brain: The decompositional substrate for language comprehension. Philosophical Transactions of the Royal Society: Biological Sciences, 362, 823–836, 2007]. Here we investigated how English derivationally complex words engage these systems, asking whether they selectively activate the LH system in the same way as inflections or whether they primarily engage the bilateral system that support nondecompositional access. In an fMRI study, we saw no evidence for selective activation of the LH frontotemporal system, even for highly transparent forms like bravely. Instead, a combination of univariate and multivariate analyses revealed the engagement of a distributed bilateral system, modulated by factors of perceptual complexity and semantic transparency. We discuss the implications for theories of the processing and representation of English derivational morphology and highlight the importance of neurobiological constraints in understanding these processes.


Language and Linguistics Compass | 2010

Neurocognitive Contexts for Morphological Complexity: Dissociating Inflection and Derivation

Mirjana Bozic; William D. Marslen-Wilson

We review experimental findings about the processing of morphologically complex words, and provide a neuro-cognitive account of the mechanisms that underlie this processing. Within the framework of the brain network that supports language comprehension, we argue that complex words created by regular and rule-based combinations, such as regular inflections in English (e.g. played, jumps), engage a left-lateralized frontotemporal subsystem, specialized for grammatical computations. In contrast, processing of lexicalized and unpredictable complexity, present in derived words (e.g. bravely, warmth), engages a bilateral subsystem, which underpins whole-word, stem-based lexical access. We suggest a potential neurobiological framework for this proposed organization.


Brain and Language | 2013

Cross-linguistic parallels in processing derivational morphology: Evidence from Polish

Mirjana Bozic; Zanna Szlachta; William D. Marslen-Wilson

Neuroimaging evidence in English suggests that the neurocognitive processing of derivationally complex words primarily reflects their properties as whole forms. The current experiment provides a cross-linguistic examination of these proposals by investigating the processing of derivationally complex words in the rich morphological system of Polish. Within the framework of a dual language system approach, we asked whether there is evidence for decompositional processing of derivationally complex Polish stems - reflected in the activation of a linguistically specific decompositional system in the left hemisphere - or for increased competition between the derived stem and its embedded base stem in the bilateral system. The results showed activation in the bilateral system and no evidence for selective engagement of the left hemisphere decompositional system. This provides a cross-linguistic validation for the hypothesis that the neurocognitive processing of derived stems primarily reflects their properties as stored forms.


Human Brain Mapping | 2015

Grammatical analysis as a distributed neurobiological function

Mirjana Bozic; Elisabeth Fonteneau; Li Su; William D. Marslen-Wilson

Language processing engages large‐scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences—inflectionally complex words and minimal phrases—and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left‐lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left‐lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage. Hum Brain Mapp 36:1190–1201, 2015.


Cerebral Cortex | 2015

Brain Network Connectivity During Language Comprehension: Interacting Linguistic and Perceptual Subsystems

Elisabeth Fonteneau; Mirjana Bozic; William D. Marslen-Wilson

The dynamic neural processes underlying spoken language comprehension require the real-time integration of general perceptual and specialized linguistic information. We recorded combined electro- and magnetoencephalographic measurements of participants listening to spoken words varying in perceptual and linguistic complexity. Combinatorial linguistic complexity processing was consistently localized to left perisylvian cortices, whereas competition-based perceptual complexity triggered distributed activity over both hemispheres. Functional connectivity showed that linguistically complex words engaged a distributed network of oscillations in the gamma band (20–60 Hz), which only partially overlapped with the network supporting perceptual analysis. Both processes enhanced cross-talk between left temporal regions and bilateral pars orbitalis (BA47). The left-lateralized synchrony between temporal regions and pars opercularis (BA44) was specific to the linguistically complex words, suggesting a specific role of left frontotemporal cross-cortical interactions in morphosyntactic computations. Synchronizations in oscillatory dynamics reveal the transient coupling of functional networks that support specific computational processes in language comprehension.


Journal of Cognitive Neuroscience | 2016

Decompositional representation of morphological complexity: Multivariate fmri evidence from italian

Francesca Carota; Mirjana Bozic; William D. Marslen-Wilson

Derivational morphology is a cross-linguistically dominant mechanism for word formation, combining existing words with derivational affixes to create new word forms. However, the neurocognitive mechanisms underlying the representation and processing of such forms remain unclear. Recent cross-linguistic neuroimaging research suggests that derived words are stored and accessed as whole forms, without engaging the left-hemisphere perisylvian network associated with combinatorial processing of syntactically and inflectionally complex forms. Using fMRI with a “simple listening” no-task procedure, we reexamine these suggestions in the context of the root-based combinatorially rich Italian lexicon to clarify the role of semantic transparency (between the derived form and its stem) and affix productivity in determining whether derived forms are decompositionally represented and which neural systems are involved. Combined univariate and multivariate analyses reveal a key role for semantic transparency, modulated by affix productivity. Opaque forms show strong cohort competition effects, especially for words with nonproductive suffixes (ventura, “destiny”). The bilateral frontotemporal activity associated with these effects indicates that opaque derived words are processed as whole forms in the bihemispheric language system. Semantically transparent words with productive affixes (libreria, “bookshop”) showed no effects of lexical competition, suggesting morphologically structured co-representation of these derived forms and their stems, whereas transparent forms with nonproductive affixes (pineta, pine forest) show intermediate effects. Further multivariate analyses of the transparent derived forms revealed affix productivity effects selectively involving left inferior frontal regions, suggesting that the combinatorial and decompositional processes triggered by such forms can vary significantly across languages.


Journal of Cognitive Neuroscience | 2017

Syntactic Complexity and Frequency in the Neurocognitive Language System

Yun-Hsuan Yang; William D. Marslen-Wilson; Mirjana Bozic

Prominent neurobiological models of language follow the widely accepted assumption that language comprehension requires two principal mechanisms: a lexicon storing the sound-to-meaning mapping of words, primarily involving bilateral temporal regions, and a combinatorial processor for syntactically structured items, such as phrases and sentences, localized in a left-lateralized network linking left inferior frontal gyrus (LIFG) and posterior temporal areas. However, recent research showing that the processing of simple phrasal sequences may engage only bilateral temporal areas, together with the claims of distributional approaches to grammar, raise the question of whether frequent phrases are stored alongside individual words in temporal areas. In this fMRI study, we varied the frequency of words and of short and long phrases in English. If frequent phrases are indeed stored, then only less frequent items should generate selective left frontotemporal activation, because memory traces for such items would be weaker or not available in temporal cortex. Complementary univariate and multivariate analyses revealed that, overall, simple words (verbs) and long phrases engaged LIFG and temporal areas, whereas short phrases engaged bilateral temporal areas, suggesting that syntactic complexity is a key factor for LIFG activation. Although we found a robust frequency effect for words in temporal areas, no frequency effects were found for the two phrasal conditions. These findings support the conclusion that long and short phrases are analyzed, respectively, in the left frontal network and in a bilateral temporal network but are not retrieved from memory in the same way as simple words during spoken language comprehension.

Collaboration


Dive into the Mirjana Bozic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Su

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Zanna Szlachta

Cognition and Brain Sciences Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleksandra Jelowicka

Cognition and Brain Sciences Unit

View shared research outputs
Researchain Logo
Decentralizing Knowledge