Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirko Paiardini is active.

Publication


Featured researches published by Mirko Paiardini.


Immunity | 2003

Nonpathogenic SIV Infection of Sooty Mangabeys Is Characterized by Limited Bystander Immunopathology Despite Chronic High-Level Viremia

Guido Silvestri; Donald L. Sodora; Richard A. Koup; Mirko Paiardini; Shawn P. O'Neil; Harold M. McClure; Silvija I. Staprans; Mark B. Feinberg

HIV-infected humans and SIV-infected rhesus macaques who remain healthy despite long-term infection exhibit exceptionally low levels of virus replication and active antiviral cellular immune responses. In contrast, sooty mangabey monkeys that represent natural hosts for SIV infection do not develop AIDS despite high levels of virus replication and limited antiviral CD8(+) T cell responses. We report here that SIV-infected mangabeys maintain preserved T lymphocyte populations and regenerative capacity and manifest far lower levels of aberrant immune activation and apoptosis than are seen in pathogenic SIV and HIV infections. These data suggest that direct consequences of virus replication alone cannot account for progressive CD4(+) T cell depletion leading to AIDS. Rather, attenuated immune activation enables SIV-infected mangabeys to avoid the bystander damage seen in pathogenic infections and protects them from developing AIDS.


Blood | 2008

Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections

Jason M. Brenchley; Mirko Paiardini; Kenneth S. Knox; Ava I. Asher; Barbara Cervasi; Tedi E. Asher; Phillip Scheinberg; David A. Price; Chadi A. Hage; Lisa M. Kholi; Alexander Khoruts; Ian Frank; James G. Else; Timothy W. Schacker; Guido Silvestri

Acute HIV infection is characterized by massive loss of CD4 T cells from the gastrointestinal (GI) tract. Th17 cells are critical in the defense against microbes, particularly at mucosal surfaces. Here we analyzed Th17 cells in the blood, GI tract, and broncheoalveolar lavage of HIV-infected and uninfected humans, and SIV-infected and uninfected sooty mangabeys. We found that (1) human Th17 cells are specific for extracellular bacterial and fungal antigens, but not common viral antigens; (2) Th17 cells are infected by HIV in vivo, but not preferentially so; (3) CD4 T cells in blood of HIV-infected patients are skewed away from a Th17 phenotype toward a Th1 phenotype with cellular maturation; (4) there is significant loss of Th17 cells in the GI tract of HIV-infected patients; (5) Th17 cells are not preferentially lost from the broncheoalveolar lavage of HIV-infected patients; and (6) SIV-infected sooty mangabeys maintain healthy frequencies of Th17 cells in the blood and GI tract. These observations further elucidate the immunodeficiency of HIV disease and may provide a mechanistic basis for the mucosal barrier breakdown that characterizes HIV infection. Finally, these data may help account for the nonprogressive nature of nonpathogenic SIV infection in sooty mangabeys.


PLOS Pathogens | 2010

Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections

Jacob D. Estes; Levelle D. Harris; Nichole R. Klatt; Brian Tabb; Stefania Pittaluga; Mirko Paiardini; G. Robin Barclay; Jeremy Smedley; Rhonda Pung; Kenneth M. Oliveira; Vanessa M. Hirsch; Guido Silvestri; Christopher J. Miller; Ashley T. Haase; Jeffrey D. Lifson; Jason M. Brenchley

The chronic phase of HIV infection is marked by pathological activation of the immune system, the extent of which better predicts disease progression than either plasma viral load or CD4+ T cell count. Recently, translocation of microbial products from the gastrointestinal tract has been proposed as an underlying cause of this immune activation, based on indirect evidence including the detection of microbial products and specific immune responses in the plasma of chronically HIV-infected humans or SIV-infected Asian macaques. We analyzed tissues from SIV-infected rhesus macaques (RMs) to provide direct in situ evidence for translocation of microbial constituents from the lumen of the intestine into the lamina propria and to draining and peripheral lymph nodes and liver, accompanied by local immune responses in affected tissues. In chronically SIV-infected RMs this translocation is associated with breakdown of the integrity of the epithelial barrier of the gastrointestinal (GI) tract and apparent inability of lamina propria macrophages to effectively phagocytose translocated microbial constituents. By contrast, in the chronic phase of SIV infection in sooty mangabeys, we found no evidence of epithelial barrier breakdown, no increased microbial translocation and no pathological immune activation. Because immune activation is characteristic of the chronic phase of progressive HIV/SIV infections, these findings suggest that increased microbial translocation from the GI tract, in excess of capacity to clear the translocated microbial constituents, helps drive pathological immune activation. Novel therapeutic approaches to inhibit microbial translocation and/or attenuate chronic immune activation in HIV-infected individuals may complement treatments aimed at direct suppression of viral replication.


Journal of Clinical Investigation | 2009

Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys

Steven E. Bosinger; Qingsheng Li; Shari N. Gordon; Nichole R. Klatt; Lijie Duan; Luoling Xu; Nicholas Francella; Abubaker Sidahmed; Anthony J. Smith; Elizabeth M. Cramer; Ming Zeng; David Masopust; John V. Carlis; Longsi Ran; Thomas H. Vanderford; Mirko Paiardini; R. Benjamin Isett; Don A. Baldwin; James G. Else; Silvija I. Staprans; Guido Silvestri; Ashley T. Haase; David J. Kelvin

Natural SIV infection of sooty mangabeys (SMs) is nonprogressive despite chronic virus replication. Strikingly, it is characterized by low levels of immune activation, while pathogenic SIV infection of rhesus macaques (RMs) is associated with chronic immune activation. To elucidate the mechanisms underlying this intriguing phenotype, we used high-density oligonucleotide microarrays to longitudinally assess host gene expression in SIV-infected SMs and RMs. We found that acute SIV infection of SMs was consistently associated with a robust innate immune response, including widespread upregulation of IFN-stimulated genes (ISGs) in blood and lymph nodes. While SMs exhibited a rapid resolution of ISG expression and immune activation, both responses were observed chronically in RMs. Systems biology analysis indicated that expression of the lymphocyte inhibitory receptor LAG3, a marker of T cell exhaustion, correlated with immune activation in SIV-infected RMs but not SMs. Our findings suggest that active immune regulatory mechanisms, rather than intrinsically attenuated innate immune responses, underlie the low levels of immune activation characteristic of SMs chronically infected with SIV.


Journal of Immunology | 2007

Severe Depletion of Mucosal CD4+ T Cells in AIDS-Free Simian Immunodeficiency Virus-Infected Sooty Mangabeys

Shari N. Gordon; Nichole R. Klatt; Steven E. Bosinger; Jason M. Brenchley; Jeffrey M. Milush; Jessica C. Engram; Richard M. Dunham; Mirko Paiardini; Sara Klucking; Ali Danesh; Elizabeth Strobert; Cristian Apetrei; Ivona Pandrea; David J. Kelvin; Silvija I. Staprans; Donald L. Sodora; Guido Silvestri

HIV-infected humans and SIV-infected rhesus macaques experience a rapid and dramatic loss of mucosal CD4+ T cells that is considered to be a key determinant of AIDS pathogenesis. In this study, we show that nonpathogenic SIV infection of sooty mangabeys (SMs), a natural host species for SIV, is also associated with an early, severe, and persistent depletion of memory CD4+ T cells from the intestinal and respiratory mucosa. Importantly, the kinetics of the loss of mucosal CD4+ T cells in SMs is similar to that of SIVmac239-infected rhesus macaques. Although the nonpathogenic SIV infection of SMs induces the same pattern of mucosal target cell depletion observed during pathogenic HIV/SIV infections, the depletion in SMs occurs in the context of limited local and systemic immune activation and can be reverted if virus replication is suppressed by antiretroviral treatment. These results indicate that a profound depletion of mucosal CD4+ T cells is not sufficient per se to induce loss of mucosal immunity and disease progression during a primate lentiviral infection. We propose that, in the disease-resistant SIV-infected SMs, evolutionary adaptation to both preserve immune function with fewer mucosal CD4+ T cells and attenuate the immune activation that follows acute viral infection protect these animals from progressing to AIDS.


Journal of Immunology | 2005

Loss of CD127 expression defines an expansion of effector CD8+ T cells in HIV-infected individuals

Mirko Paiardini; Barbara Cervasi; Helmut Albrecht; Alagarraju Muthukumar; Richard M. Dunham; Shari N. Gordon; Henry Radziewicz; Giuseppe Piedimonte; Mauro Magnani; Maria Montroni; Susan M. Kaech; Amy Weintrob; John D. Altman; Donald L. Sodora; Mark B. Feinberg; Guido Silvestri

The immunodeficiency that follows HIV infection is related to the virus-mediated killing of infected CD4+ T cells, the chronic activation of the immune system, and the impairment of T cell production. In this study we show that in HIV-infected individuals the loss of IL-7R (CD127) expression defines the expansion of a subset of CD8+ T cells, specific for HIV as well as other Ags, that show phenotypic (i.e., loss of CCR7 and CD62 ligand expression with enrichment in activated and/or proliferating cells) as well as functional (i.e., production of IFN-γ, but not IL-2, decreased ex vivo proliferative potential and increased susceptibility to apoptosis) features of effector T cells. Importantly, in HIV-infected individuals the levels of CD8+CD127− T cells are directly correlated with the main markers of disease progression (i.e., plasma viremia and CD4+ T cell depletion) as well as with the indices of overall T cell activation. In all, these results identify the expansion of CD8+CD127− effector-like T cells as a novel feature of the HIV-associated immune perturbation. Further studies are thus warranted to determine whether measurements of CD127 expression on CD8+ T cells may be useful in the clinical management of HIV-infected individuals.


Journal of Clinical Investigation | 2007

Understanding the benign nature of SIV infection in natural hosts.

Guido Silvestri; Mirko Paiardini; Ivona Pandrea; Michael M. Lederman; Donald L. Sodora

In striking contrast to HIV infection, natural SIV infection of African nonhuman primates is asymptomatic and usually does not induce significant CD4+ T cell depletion despite high levels of virus replication. Recently, significant progress has been made in understanding the mechanisms underlying the remarkable difference in infection outcome between natural and nonnatural HIV/SIV hosts. These advances include the identification of limited immune activation as a key factor protecting natural SIV hosts from AIDS and the discovery of low CC chemokine receptor 5 expression on CD4+ T cells as a specific and consistent immunologic feature in these animals. Further elucidation of the pathways by which the differences in immune activation between natural and nonnatural hosts are manifest holds promise for the design of novel therapeutic approaches to HIV infection.


Science | 2012

Natural SIV hosts: showing AIDS the door.

Ann Chahroudi; Steven E. Bosinger; Thomas H. Vanderford; Mirko Paiardini; Guido Silvestri

Lessons from SIV HIV infection in humans is a chronic infection and, if left untreated, the majority of infected individuals will succumb to AIDS. Many species of African nonhuman primates are chronically infected with simian immunodeficiency virus (SIV); however, in the majority of these species, the animals remain healthy despite the presence of high viral loads. Chahroudi et al. (p. 1188) review the underlying immune mechanisms that help protect natural hosts from progressing to AIDS and how these responses differ from what is observed in HIV-infected humans and SIV-infected nonhuman primate species that develop AIDS. Many species of African nonhuman primates are naturally infected with simian immunodeficiency viruses (SIVs) in the wild and in captivity. In contrast to HIV-infected humans, these natural SIV hosts typically do not develop AIDS, despite chronic infection with a highly replicating virus. In this Review, we discuss the most recent advances on the mechanisms of protection from disease progression in natural SIV hosts, with emphasis on how they differ from pathogenic HIV/SIV infections of humans and rhesus macaques. These mechanisms include: (i) resolution of immune activation after acute infection, (ii) restricted pattern of target cell infection, and (iii) protection from mother-to-infant transmission. We highlight the areas that should be pursued in future studies, focusing on potential applications for the treatment and prevention of HIV infection.


Nature Medicine | 2011

Low levels of SIV infection in sooty mangabey central memory CD4 + T cells are associated with limited CCR5 expression

Mirko Paiardini; Barbara Cervasi; Elane Reyes-Aviles; Luca Micci; Alexandra M. Ortiz; Ann Chahroudi; Carol L. Vinton; Shari N. Gordon; Steven E. Bosinger; Nicholas Francella; Paul L Hallberg; Elizabeth M. Cramer; Timothy E. Schlub; Ming Liang Chan; Nadeene E. Riddick; Ronald G. Collman; Cristian Apetrei; Ivona Pandrea; James G. Else; Jan Münch; Frank Kirchhoff; Miles P. Davenport; Jason M. Brenchley; Guido Silvestri

Naturally simian immunodeficiency virus (SIV)-infected sooty mangabeys do not progress to AIDS despite high-level virus replication. We previously showed that the fraction of CD4+CCR5+ T cells is lower in sooty mangabeys compared to humans and macaques. Here we found that, after in vitro stimulation, sooty mangabey CD4+ T cells fail to upregulate CCR5 and that this phenomenon is more pronounced in CD4+ central memory T cells (TCM cells). CD4+ T cell activation was similarly uncoupled from CCR5 expression in sooty mangabeys in vivo during acute SIV infection and the homeostatic proliferation that follows antibody-mediated CD4+ T cell depletion. Sooty mangabey CD4+ TCM cells that express low amounts of CCR5 showed reduced susceptibility to SIV infection both in vivo and in vitro when compared to CD4+ TCM cells of rhesus macaques. These data suggest that low CCR5 expression on sooty mangabey CD4+ T cells favors the preservation of CD4+ T cell homeostasis and promotes an AIDS-free status by protecting CD4+ TCM cells from direct virus infection.


Journal of Virology | 2010

Downregulation of Robust Acute Type I Interferon Responses Distinguishes Nonpathogenic Simian Immunodeficiency Virus (SIV) Infection of Natural Hosts from Pathogenic SIV Infection of Rhesus Macaques

Levelle D. Harris; Brian Tabb; Donald L. Sodora; Mirko Paiardini; Nichole R. Klatt; Guido Silvestri; Michaela Müller-Trutwin; Ivona Vasile-Pandrea; Cristian Apetrei; Vanessa M. Hirsch; Jeffrey D. Lifson; Jason M. Brenchley; Jacob D. Estes

ABSTRACT The mechanisms underlying the AIDS resistance of natural hosts for simian immunodeficiency virus (SIV) remain unknown. Recently, it was proposed that natural SIV hosts avoid disease because their plasmacytoid dendritic cells (pDCs) are intrinsically unable to produce alpha interferon (IFN-α) in response to SIV RNA stimulation. However, here we show that (i) acute SIV infections of natural hosts are associated with a rapid and robust type I IFN response in vivo, (ii) pDCs are the principal in vivo producers of IFN-α/β at peak acute infection in lymphatic tissues, and (iii) natural SIV hosts downregulate these responses in early chronic infection. In contrast, persistently high type I IFN responses are observed during pathogenic SIV infection of rhesus macaques.

Collaboration


Dive into the Mirko Paiardini's collaboration.

Top Co-Authors

Avatar

Guido Silvestri

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Barbara Cervasi

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Jason M. Brenchley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Luca Micci

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Else

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Jessica C. Engram

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge