Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guido Silvestri is active.

Publication


Featured researches published by Guido Silvestri.


Nature Medicine | 2006

Microbial translocation is a cause of systemic immune activation in chronic HIV infection

Jason M. Brenchley; David A. Price; Timothy W. Schacker; Tedi E. Asher; Guido Silvestri; Srinivas S. Rao; Zachary Kazzaz; Ethan Bornstein; Olivier Lambotte; Daniel M. Altmann; Bruce R. Blazar; Benigno Rodriguez; Leia Teixeira-Johnson; Alan Landay; Jeffrey N. Martin; Frederick Hecht; Louis J. Picker; Michael M. Lederman; Steven G. Deeks

Chronic activation of the immune system is a hallmark of progressive HIV infection and better predicts disease outcome than plasma viral load, yet its etiology remains obscure. Here we show that circulating microbial products, probably derived from the gastrointestinal tract, are a cause of HIV-related systemic immune activation. Circulating lipopolysaccharide, which we used as an indicator of microbial translocation, was significantly increased in chronically HIV-infected individuals and in simian immunodeficiency virus (SIV)-infected rhesus macaques (P ≤ 0.002). We show that increased lipopolysaccharide is bioactive in vivo and correlates with measures of innate and adaptive immune activation. Effective antiretroviral therapy seemed to reduce microbial translocation partially. Furthermore, in nonpathogenic SIV infection of sooty mangabeys, microbial translocation did not seem to occur. These data establish a mechanism for chronic immune activation in the context of a compromised gastrointestinal mucosal surface and provide new directions for therapeutic interventions that modify the consequences of acute HIV infection.


Immunity | 2003

Nonpathogenic SIV Infection of Sooty Mangabeys Is Characterized by Limited Bystander Immunopathology Despite Chronic High-Level Viremia

Guido Silvestri; Donald L. Sodora; Richard A. Koup; Mirko Paiardini; Shawn P. O'Neil; Harold M. McClure; Silvija I. Staprans; Mark B. Feinberg

HIV-infected humans and SIV-infected rhesus macaques who remain healthy despite long-term infection exhibit exceptionally low levels of virus replication and active antiviral cellular immune responses. In contrast, sooty mangabey monkeys that represent natural hosts for SIV infection do not develop AIDS despite high levels of virus replication and limited antiviral CD8(+) T cell responses. We report here that SIV-infected mangabeys maintain preserved T lymphocyte populations and regenerative capacity and manifest far lower levels of aberrant immune activation and apoptosis than are seen in pathogenic SIV and HIV infections. These data suggest that direct consequences of virus replication alone cannot account for progressive CD4(+) T cell depletion leading to AIDS. Rather, attenuated immune activation enables SIV-infected mangabeys to avoid the bystander damage seen in pathogenic infections and protects them from developing AIDS.


Blood | 2008

Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections

Jason M. Brenchley; Mirko Paiardini; Kenneth S. Knox; Ava I. Asher; Barbara Cervasi; Tedi E. Asher; Phillip Scheinberg; David A. Price; Chadi A. Hage; Lisa M. Kholi; Alexander Khoruts; Ian Frank; James G. Else; Timothy W. Schacker; Guido Silvestri

Acute HIV infection is characterized by massive loss of CD4 T cells from the gastrointestinal (GI) tract. Th17 cells are critical in the defense against microbes, particularly at mucosal surfaces. Here we analyzed Th17 cells in the blood, GI tract, and broncheoalveolar lavage of HIV-infected and uninfected humans, and SIV-infected and uninfected sooty mangabeys. We found that (1) human Th17 cells are specific for extracellular bacterial and fungal antigens, but not common viral antigens; (2) Th17 cells are infected by HIV in vivo, but not preferentially so; (3) CD4 T cells in blood of HIV-infected patients are skewed away from a Th17 phenotype toward a Th1 phenotype with cellular maturation; (4) there is significant loss of Th17 cells in the GI tract of HIV-infected patients; (5) Th17 cells are not preferentially lost from the broncheoalveolar lavage of HIV-infected patients; and (6) SIV-infected sooty mangabeys maintain healthy frequencies of Th17 cells in the blood and GI tract. These observations further elucidate the immunodeficiency of HIV disease and may provide a mechanistic basis for the mucosal barrier breakdown that characterizes HIV infection. Finally, these data may help account for the nonprogressive nature of nonpathogenic SIV infection in sooty mangabeys.


Nature | 2009

Enhancing SIV-Specific Immunity In Vivo by PD-1 Blockade

Vijayakumar Velu; Kehmia Titanji; Baogong Zhu; Sajid Husain; Annette Pladevega; Lilin Lai; Thomas H. Vanderford; Lakshmi Chennareddi; Guido Silvestri; Gordon J. Freeman; Rafi Ahmed; Rama Rao Amara

Chronic immunodeficiency virus infections are characterized by dysfunctional cellular and humoral antiviral immune responses. As such, immune modulatory therapies that enhance and/or restore the function of virus-specific immunity may protect from disease progression. Here we investigate the safety and immune restoration potential of blockade of the co-inhibitory receptor programmed death 1 (PD-1) during chronic simian immunodeficiency virus (SIV) infection in macaques. We demonstrate that PD-1 blockade using an antibody to PD-1 is well tolerated and results in rapid expansion of virus-specific CD8 T cells with improved functional quality. This enhanced T-cell immunity was seen in the blood and also in the gut, a major reservoir of SIV infection. PD-1 blockade also resulted in proliferation of memory B cells and increases in SIV envelope-specific antibody. These improved immune responses were associated with significant reductions in plasma viral load and also prolonged the survival of SIV-infected macaques. Blockade was effective during the early (week 10) as well as late (∼week 90) phases of chronic infection even under conditions of severe lymphopenia. These results demonstrate enhancement of both cellular and humoral immune responses during a pathogenic immunodeficiency virus infection by blocking a single inhibitory pathway and identify a novel therapeutic approach for control of human immunodeficiency virus infections.


Nature Immunology | 2012

B cell–helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen

Irene Puga; Montserrat Cols; Carolina M. Barra; Bing-Yang He; Linda Cassis; Maurizio Gentile; Laura Comerma; Alejo Chorny; Meimei Shan; Weifeng Xu; Giuliana Magri; Daniel M. Knowles; Wayne Tam; April Chiu; James B. Bussel; Sergi Serrano; José A. Lorente; Beatriz Bellosillo; Josep Lloreta; Nuria Juanpere; Francesc Alameda; Teresa Baró; Cristina Díaz de Heredia; Nuria Toran; Albert Catala; Montserrat Torrebadell; Clàudia Fortuny; Victoria Cusí; Carmen Carreras; George A. Diaz

Neutrophils utilize immunoglobulins (Igs) to clear antigen, but their role in Ig production is unknown. Here we identified neutrophils around the marginal zone (MZ) of the spleen, a B cell area specialized in T-independent Ig responses to circulating antigen. Neutrophils colonized peri-MZ areas after post-natal mucosal colonization by microbes and enhanced their B-helper function upon receiving reprogramming signals from splenic sinusoidal endothelial cells, including interleukin 10 (IL-10). Splenic neutrophils induced Ig class switching, somatic hypermutation and antibody production by activating MZ B cells through a mechanism involving the cytokines BAFF, APRIL and IL-21. Neutropenic patients had fewer and hypomutated MZ B cells and less preimmune Igs to T-independent antigens, which indicates that neutrophils generate an innate layer of antimicrobial Ig defense by interacting with MZ B cells.Neutrophils use immunoglobulins to clear antigen, but their role in immunoglobulin production is unknown. Here we identified neutrophils around the marginal zone (MZ) of the spleen, a B cell area specialized in T cell–independent immunoglobulin responses to circulating antigen. Neutrophils colonized peri-MZ areas after postnatal mucosal colonization by microbes and enhanced their B cell–helper function after receiving reprogramming signals, including interleukin 10 (IL-10), from splenic sinusoidal endothelial cells. Splenic neutrophils induced immunoglobulin class switching, somatic hypermutation and antibody production by activating MZ B cells through a mechanism that involved the cytokines BAFF, APRIL and IL-21. Neutropenic patients had fewer and hypomutated MZ B cells and a lower abundance of preimmune immunoglobulins to T cell–independent antigens, which indicates that neutrophils generate an innate layer of antimicrobial immunoglobulin defense by interacting with MZ B cells.


Nature Reviews Immunology | 2012

Towards an HIV cure: a global scientific strategy

Steven G. Deeks; Brigitte Autran; Ben Berkhout; Monsef Benkirane; Scott Cairns; Nicolas Chomont; Tae Wook Chun; Melissa Churchill; Michele Di Mascio; Christine Katlama; Alain Lafeuillade; Alan Landay; Michael M. Lederman; Sharon R. Lewin; Frank Maldarelli; David J. Margolis; Martin Markowitz; Javier Martinez-Picado; James I. Mullins; John W. Mellors; Santiago Moreno; Una O'Doherty; Sarah Palmer; Marie Capucine Penicaud; Matija Peterlin; Guido Poli; Jean-Pierre Routy; Christine Rouzioux; Guido Silvestri; Mario Stevenson

Given the limitations of antiretroviral therapy and recent advances in our understanding of HIV persistence during effective treatment, there is a growing recognition that a cure for HIV infection is both needed and feasible. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. Several priorities for basic, translational and clinical research were identified. This Opinion article summarizes the groups recommended key goals for the international community.


Journal of Clinical Investigation | 2009

Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response

Béatrice Jacquelin; Véronique Mayau; Brice Targat; Anne Sophie Liovat; Désirée Kunkel; Gaël Petitjean; Marie Agnès Dillies; Pierre Roques; Cécile Butor; Guido Silvestri; Luis D. Giavedoni; Pierre Lebon; Françoise Barré-Sinoussi; Arndt Benecke; Michaela Müller-Trutwin

African green monkeys (AGMs) infected with the AGM type of SIV (SIVagm) do not develop chronic immune activation and AIDS, despite viral loads similar to those detected in humans infected with HIV-1 and rhesus macaques (RMs) infected with the RM type of SIV (SIVmac). Because chronic immune activation drives progressive CD4+ T cell depletion and immune cell dysfunctions, factors that characterize disease progression, we sought to understand the molecular basis of this AGM phenotype. To this end, we longitudinally assessed the gene expression profiles of blood- and lymph node-derived CD4+ cells from AGMs and RMs in response to SIVagm and SIVmac infection, respectively, using a genomic microarray platform. The molecular signature of acute infection was characterized, in both species, by strong upregulation of type I IFN-stimulated genes (ISGs). ISG expression returned to basal levels after postinfection day 28 in AGMs but was sustained in RMs, especially in the lymph node-derived cells. We also found that SIVagm induced IFN-alpha production by AGM cells in vitro and that low IFN-alpha levels were sufficient to induce strong ISG responses. In conclusion, SIV infection triggered a rapid and strong IFN-alpha response in vivo in both AGMs and RMs, with this response being efficiently controlled only in AGMs, possibly as a result of active regulatory mechanisms.


Cell | 2006

Nef-Mediated Suppression of T Cell Activation Was Lost in a Lentiviral Lineage that Gave Rise to HIV-1

Michael Schindler; Jan Münch; Olaf Kutsch; Hui Li; Mario L. Santiago; Frederic Bibollet-Ruche; Michaela Müller-Trutwin; Francis J. Novembre; Martine Peeters; Valérie Courgnaud; Elizabeth Bailes; Pierre Roques; Donald L. Sodora; Guido Silvestri; Paul M. Sharp; Beatrice H. Hahn; Frank Kirchhoff

High-level immune activation and T cell apoptosis represent a hallmark of HIV-1 infection that is absent from nonpathogenic SIV infections in natural primate hosts. The mechanisms causing these varying levels of immune activation are not understood. Here, we report that nef alleles from the great majority of primate lentiviruses, including HIV-2, downmodulate TCR-CD3 from infected T cells, thereby blocking their responsiveness to activation. In contrast, nef alleles from HIV-1 and a subset of closely related SIVs fail to downregulate TCR-CD3 and to inhibit cell death. Thus, Nef-mediated suppression of T cell activation is a fundamental property of primate lentiviruses that likely evolved to maintain viral persistence in the context of an intact host immune system. This function was lost during viral evolution in a lineage that gave rise to HIV-1 and may have predisposed the simian precursor of HIV-1 for greater pathogenicity in humans.


PLOS Pathogens | 2010

Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections

Jacob D. Estes; Levelle D. Harris; Nichole R. Klatt; Brian Tabb; Stefania Pittaluga; Mirko Paiardini; G. Robin Barclay; Jeremy Smedley; Rhonda Pung; Kenneth M. Oliveira; Vanessa M. Hirsch; Guido Silvestri; Christopher J. Miller; Ashley T. Haase; Jeffrey D. Lifson; Jason M. Brenchley

The chronic phase of HIV infection is marked by pathological activation of the immune system, the extent of which better predicts disease progression than either plasma viral load or CD4+ T cell count. Recently, translocation of microbial products from the gastrointestinal tract has been proposed as an underlying cause of this immune activation, based on indirect evidence including the detection of microbial products and specific immune responses in the plasma of chronically HIV-infected humans or SIV-infected Asian macaques. We analyzed tissues from SIV-infected rhesus macaques (RMs) to provide direct in situ evidence for translocation of microbial constituents from the lumen of the intestine into the lamina propria and to draining and peripheral lymph nodes and liver, accompanied by local immune responses in affected tissues. In chronically SIV-infected RMs this translocation is associated with breakdown of the integrity of the epithelial barrier of the gastrointestinal (GI) tract and apparent inability of lamina propria macrophages to effectively phagocytose translocated microbial constituents. By contrast, in the chronic phase of SIV infection in sooty mangabeys, we found no evidence of epithelial barrier breakdown, no increased microbial translocation and no pathological immune activation. Because immune activation is characteristic of the chronic phase of progressive HIV/SIV infections, these findings suggest that increased microbial translocation from the GI tract, in excess of capacity to clear the translocated microbial constituents, helps drive pathological immune activation. Novel therapeutic approaches to inhibit microbial translocation and/or attenuate chronic immune activation in HIV-infected individuals may complement treatments aimed at direct suppression of viral replication.


Journal of Clinical Investigation | 2009

Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys

Steven E. Bosinger; Qingsheng Li; Shari N. Gordon; Nichole R. Klatt; Lijie Duan; Luoling Xu; Nicholas Francella; Abubaker Sidahmed; Anthony J. Smith; Elizabeth M. Cramer; Ming Zeng; David Masopust; John V. Carlis; Longsi Ran; Thomas H. Vanderford; Mirko Paiardini; R. Benjamin Isett; Don A. Baldwin; James G. Else; Silvija I. Staprans; Guido Silvestri; Ashley T. Haase; David J. Kelvin

Natural SIV infection of sooty mangabeys (SMs) is nonprogressive despite chronic virus replication. Strikingly, it is characterized by low levels of immune activation, while pathogenic SIV infection of rhesus macaques (RMs) is associated with chronic immune activation. To elucidate the mechanisms underlying this intriguing phenotype, we used high-density oligonucleotide microarrays to longitudinally assess host gene expression in SIV-infected SMs and RMs. We found that acute SIV infection of SMs was consistently associated with a robust innate immune response, including widespread upregulation of IFN-stimulated genes (ISGs) in blood and lymph nodes. While SMs exhibited a rapid resolution of ISG expression and immune activation, both responses were observed chronically in RMs. Systems biology analysis indicated that expression of the lymphocyte inhibitory receptor LAG3, a marker of T cell exhaustion, correlated with immune activation in SIV-infected RMs but not SMs. Our findings suggest that active immune regulatory mechanisms, rather than intrinsically attenuated innate immune responses, underlie the low levels of immune activation characteristic of SMs chronically infected with SIV.

Collaboration


Dive into the Guido Silvestri's collaboration.

Top Co-Authors

Avatar

Mirko Paiardini

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Ann Chahroudi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Steven E. Bosinger

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Else

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Jason M. Brenchley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barbara Cervasi

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Thomas H. Vanderford

Yerkes National Primate Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge