Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miroslav Mišík is active.

Publication


Featured researches published by Miroslav Mišík.


British Journal of Nutrition | 2008

Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview.

Siegfried Knasmüller; Armen Nersesyan; Miroslav Mišík; Christopher Gerner; Wolfgang Mikulits; Veronika Ehrlich; Christine Hoelzl; Akos Szakmary; Karl-Heinz Wagner

This article describes the principles and limitations of methods used to investigate reactive oxygen species (ROS) protective properties of dietary constituents and is aimed at providing a better understanding of the requirements for science based health claims of antioxidant (AO) effects of foods. A number of currently used biochemical measurements aimed of determining the total antioxidant capacity and oxidised lipids and proteins are carried out under unphysiological conditions and are prone to artefact formation. Probably the most reliable approaches are measurements of isoprostanes as a parameter of lipid peroxidation and determination of oxidative DNA damage. Also the design of the experimental models has a strong impact on the reliability of AO studies: the common strategy is the identification of AO by in vitro screening with cell lines. This approach is based on the assumption that protection towards ROS is due to scavenging, but recent findings indicate that activation of transcription factors which regulate genes involved in antioxidant defence plays a key role in the mode of action of AO. These processes are not adequately represented in cell lines. Another shortcoming of in vitro experiments is that AO are metabolised in vivo and that most cell lines are lacking enzymes which catalyse these reactions. Compounds with large molecular configurations (chlorophylls, anthocyans and polyphenolics) are potent AO in vitro, but weak or no effects were observed in animal/human studies with realistic doses as they are poorly absorbed. The development of -omics approaches will improve the scientific basis for health claims. The evaluation of results from microarray and proteomics studies shows that it is not possible to establish a general signature of alterations of transcription and protein patterns by AO. However, it was shown that alterations of gene expression and protein levels caused by experimentally induced oxidative stress and ROS related diseases can be normalised by dietary AO.


Mutation Research-reviews in Mutation Research | 2009

Use of single cell gel electrophoresis assays for the detection of DNA-protective effects of dietary factors in humans: Recent results and trends

Christine Hoelzl; Siegfried Knasmüller; Miroslav Mišík; Andrew R. Collins; Maria Dusinska; Armen Nersesyan

This article summarises the results of human dietary intervention trials employing the comet assay (single cell gel electrophoresis, SCGE), which have been published in the last few years (i.e., between 2005 and 2008) and describes new trends and developments as well as current problems concerning the design of intervention trials and the interpretation of the results. Most new studies were carried out with complex plant derived foods and juices; only a few were conducted with individual food constituents. With specific vegetables, for example with water cress and Brussels sprouts, potent antioxidant effects were observed; also coffee caused a protective effect and it is notable that it was more effective than consumption of a diet containing increased levels of fruits and vegetables. Interesting recent developments include the development of protocols which enable us to monitor protection towards genotoxic chemicals contained in the human diet, and it was shown in preliminary studies that alterations of the activities of drug metabolising enzymes by dietary factors lead to altered sensitivity of lymphocytes against DNA damage caused by certain dietary carcinogens. Another novel approach is the development of methods to monitor the effects of dietary factors on DNA repair. The development of protocols for experiments with exfoliated buccal cells is another potentially valuable innovation. The adequate experimental design of SCGE trials is still a matter of debate and the evaluation of the available data shows that there is an urgent need to develop guidelines concerning the number of participants, sampling periods, duration of trials, use of placebos, and definition of adequate run-in and wash-out phases. Recent studies showed that the results of dietary studies could be biased by factors such as age, sex, body mass index and life style habits and by seasonal effects. Another still unsolved problem is the interpretation of the results of SCGE trials in regard to potential beneficial health effects. The use of -omics techniques may contribute to provide mechanistic explanations in addition to conventional approaches (such as enzyme measurements). Information on health effects of dietary factors and on prevention of diseases related to DNA damage can also be obtained in experiments with animals, using SCGE to detect decreases in DNA damage in inner organs.


Mutagenesis | 2011

Micronucleus assays with Tradescantia pollen tetrads: an update

Miroslav Mišík; Ma Th; Nersesyan A; Silvano Monarca; Kim Jk; Knasmueller S

Micronucleus (MN) assays with early pollen tetrad cells of Tradescantia (Trad-MN assays) are at present the most widely used bioassays with plants for the detection of genotoxins in the environment. So far, ∼ 160 chemicals have been tested and ∼ 100 articles that concern complex environmental mixtures were published. This article summarises the results of Trad-MN studies, which have been carried out during the last 15 years with individual compounds and investigations concerning the pollution of environmental compartments (soil, water and air). The evaluation shows that the effects of certain genotoxins such as heavy metals, radionuclides, pesticides and air pollutants can be easily detected with this test. Comparisons with results obtained in MN studies with mitotic (root tip) cells indicate that meiotic tetrad cells are in general more sensitive. Important issues for future research concern the evaluation of the suitability of wildlife Tradescantia species that are sometimes used instead of specific clones (such as #4430 for which standardised protocols have been developed) as well as the assessment of the predictive value of Trad-MN results in regard to the prediction of cancer hazards in humans and adverse effects at the ecosystem level. The fact that the genotoxic effects of certain compound such as metals, which can be detected with plant bioassays, in particular with the Trad-MN assay but not in other commonly used bioassays (e.g. in bacterial tests) makes them an essential element in the batteries for environmental monitoring.


Mutation Research | 2010

Impact of paper filtered coffee on oxidative DNA-damage: results of a clinical trial.

Miroslav Mišík; Christine Hoelzl; Karl-Heinz Wagner; Christophe Cavin; Beate Moser; Michael Kundi; Tanja Simic; Leonilla Elbling; Nina Kager; Franziska Ferk; Veronika Ehrlich; Armen Nersesyan; Maria Dusinska; Benoît Schilter; Siegfried Knasmüller

Coffee is among the most frequently consumed beverages worldwide and epidemiological studies indicate that its consumption is inversely related to the incidence of diseases in which reactive oxygen species (ROS) are involved (liver cirrhosis, certain forms of cancer and neurodegenerative disorders). It has been postulated that antioxidant properties of coffee may account for this phenomenon. To find out if consumption of paper filtered coffee which is the most widely consumed form in Central Europe and the US protects humans against oxidative DNA-damage, a controlled intervention trial with a cross-over design was conducted in which the participants (n=38) consumed 800ml coffee or water daily over 5 days. DNA-damage was measured in peripheral lymphocytes in single cell gel electrophoresis assays. The extent of DNA-migration attributable to formation of oxidised purines (formamidopyrimidine glycosylase sensitive sites) was decreased after coffee intake by 12.3% (p=0.006). Biochemical parameters of the redox status (malondialdehyde, 3-nitrotyrosine and the total antioxidant levels in plasma, glutathione concentrations in blood, intracellular ROS levels and the activities of superoxide dismutase and glutathione peroxidase in lymphocytes) were not markedly altered at the end of the trial, also the urinary 8-isoprostaglandine F2α concentrations were not affected. Overall, the results indicate that coffee consumption prevents endogenous formation of oxidative DNA-damage in human, this observation may be causally related to beneficial health effects of coffee seen in earlier studies.


Water Research | 2011

Impact of ozonation on the genotoxic activity of tertiary treated municipal wastewater

Miroslav Mišík; Siegfried Knasmueller; Franziska Ferk; Margit Cichna-Markl; Tamara Grummt; Heidi Schaar; Norbert Kreuzinger

Ozonation is an emerging technology for the removal of micropollutants from treated wastewater. Aim of the present study was to investigate the impact of ozone treatment on genotoxic and acute toxic effects of tertiary treated municipal wastewater. It is known that DNA-damaging chemicals cause adverse effects in the environment and that exposure to humans leads to cancer and other diseases. Toxicity was tested in organisms from three trophic levels namely in bacteria (Salmonella/microsome assays) which enable the detection of gene mutations, in a plant bioassay (micronucleus assay with root tip cells of Allium cepa) which reflects clastogenic and aneugenic effects and in single cell gel electrophoresis (SCGE) tests with mammalian cells which detect DNA migration caused by single-, double strand breaks and alkali labile sites. In the bacterial tests negative results were obtained with untreated samples but after concentration with C(18) cartridges a positive result was found in strains TA1537 and TA98 which are sensitive to frameshift mutagens while no mutations were induced in other tester strains (TA100, TA102 and YG1024). Ozone treatment led to a decrease of the mutagenic activity of the samples. In the SCGE experiments, DNA migration was detected with the unconcentrated effluent of the treatment plant and ozonation led to a substantial decrease of this effect. In the plant bioassays, negative results were obtained with the effluent and ozone treatment did not cause an alteration of the micronucleus frequencies. Also acute toxic effects were monitored in the different indicator organisms under all experimental conditions. The bacteriocidal/bacteriostatic effects which were seen with the concentrated samples were reduced by ozonation. In the experiments with the eukaryotic (plant and animal) cells no acute toxicity was seen with the effluents and ozonation had no impact on their viability. In conclusion findings of this study indicate that ozonation of tertiary effluents of a municipal treatment plant reduces the adverse effects caused by release of mutagens in aquatic ecosystems and does not decrease the viability of bacteria and eukaryotic cells. However, future research is required to find out if, and to which extent these findings can be generalized and which mechanisms account for the detoxification of the wastewater.


Mutation Research | 2010

Xanthohumol, a prenylated flavonoid contained in beer, prevents the induction of preneoplastic lesions and DNA damage in liver and colon induced by the heterocyclic aromatic amine amino-3-methyl-imidazo[4,5-f]quinoline (IQ)

Franziska Ferk; Wolfgang W. Huber; Metka Filipič; Julia Bichler; Elisabeth Haslinger; Miroslav Mišík; Armen Nersesyan; Bettina Grasl-Kraupp; Bojana Žegura; Siegfried Knasmüller

Xanthohumol (XN) is a hop derived prenylated flavonoid contained in beer. Earlier findings indicated that it has promising chemopreventive properties and protects cells against DNA damage by carcinogens via inhibition of their activation. Furthermore, it was found that XN inhibits DNA synthesis and proliferation of cancer cells in vitro, inactivates oxygen radicals and induces apoptosis. Since evidence for its chemoprotective properties is restricted to results from in vitro experiments, we monitored the impact of XN on the formation of amino-3-methyl-imidazo[4,5-f]quinoline (IQ)-induced preneoplastic foci in livers and colons of rats (9/group). Additionally, we studied its effects on IQ-induced DNA damage in colonocytes and hepatocytes in single cell gel electrophoresis assays and on the activities of a panel of drug metabolising enzymes. Consumption of the drinking water supplemented with XN (71 microg/kg b.w.) before and during carcinogen treatment led to a significant reduction of the number of GST-p+ foci in the liver by 50% and also to a decrease of the foci area by 44%. DNA migration was decreased significantly in both, colon mucosa and liver cells, but no alterations of the activities of different phases I and II enzymes were found in hepatic tissue. Our findings indicate that XN protects against DNA damage and cancer induced by the cooked food mutagen. Since the effects were observed with low doses of XN which are reached after consumption of brews with high XN levels, our findings may be relevant for humans.


Mutation Research | 2011

Potent protection of gallic acid against DNA oxidation: results of human and animal experiments.

Franziska Ferk; Asima Chakraborty; Walter Jäger; Michael Kundi; Julia Bichler; Miroslav Mišík; Karl-Heinz Wagner; Bettina Grasl-Kraupp; Sandra Sagmeister; Gerald Haidinger; Christine Hoelzl; Armen Nersesyan; Maria Dusinska; Tatjana Simić; Siegfried Knasmüller

Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-π) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against γ-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of formation of oxidatively damaged DNA in humans.


Mutagenesis | 2011

Use of nasal cells in micronucleus assays and other genotoxicity studies.

Siegfried Knasmueller; Nina Holland; Georg Wultsch; Barbara Jandl; Sema Burgaz; Miroslav Mišík; Armen Nersesyan

Genotoxicity experiments with exfoliated nasal mucosa cells are a promising minimally invasive approach for the detection of DNA-damaging compounds in ambient air. Results of single cell gel electrophoresis (SCGE) assays with individual cells and organ cultures from bioptic material show that DNA damage caused by compounds such as nitrosamines, polycyclic aromatic hydrocarbons and pesticides can be detected. Biochemical studies indicate that enzymes involved in the metabolism of environmental mutagens are represented in nasal cells. Several protocols for experiments with nasal cells have been developed and it was shown that formaldehyde, metals, styrene and crystalline silica induce DNA damage in SCGE and/or in micronucleus studies; furthermore, it was also found that polluted urban air causes DNA instability in nasal epithelial cells. Comparisons of these data with results obtained in lymphocytes and buccal cells indicate that nasal cells are in general equally sensitive. Broad variations in the baseline levels, differences of results obtained in various studies as well as the lack of information concerning the impact of confounding factors on the outcome of experiments with these cells indicate the need for further standardisation of the experimental protocols.


Science of The Total Environment | 2014

Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants

Miroslav Mišík; Ian T. Burke; Matthias Reismüller; Clemens Pichler; Bernhard Rainer; Katarína Mišíková; William M. Mayes; Siegfried Knasmueller

UNLABELLED Red mud (RM) is a byproduct of aluminum production; worldwide between 70 and 120 million tons is produced annually. We analyzed RM which was released in the course of the Kolontar disaster in Hungary into the environment in acute and genotoxicity experiments with plants which are widely used for environmental monitoring. We detected induction of micronuclei which reflect chromosomal damage in tetrads of Tradescantia and in root cells of Allium as well as retardation of root growth with contaminated soils and leachates. Chemical analyses showed that RM contains metals, in particular high concentrations of vanadium. Follow-up experiments indicated that vanadate causes the effects in the plants. This compound causes also in humans DNA damage and positive results were obtained in carcinogenicity studies. Since it was found also in RM from other production sites our findings indicate that its release in the environment is a global problem which should be studied in more detail. CAPSULE ABSTRACT Our findings indicate that the red mud causes genotoxic effect in plants probably due to the presence of vanadate which is contained at high concentrations in the residue.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2009

Genotoxic effects of wastewater from an oncological ward.

Franziska Ferk; Miroslav Mišík; Tamara Grummt; Bernhard Majer; Maria Fuerhacker; Christoph Buchmann; Marius Vital; Maria Uhl; Katharina Lenz; Britta Grillitsch; Wolfram Parzefall; Armen Nersesyan; Siegfried Knasmüller

Aim of this study was the evaluation of the genotoxic activities of hospital wastewaters. Samples from an oncological ward of the general hospital of Vienna, Austria, were tested in the Salmonella/microsome assay in strains TA98, TA100 and TA1535 with or without metabolic activation, and in the single-cell gel electrophoresis (SCGE) assay with primary rat hepatocytes. In the bacterial tests, consistently negative results were obtained while in the experiments with liver cells a significant and dose-dependent induction of DNA damage (up to two-fold over the background) was found. Membrane filtration resulted in a substantial (62-77%) reduction of these effects, while additional treatments (activated carbon filtration and UV-irradiation) did not lead to a further decrease of the genotoxic activity of the samples. SCGE experiments with cisplatin, carboplatin and 5-fluorouracil, which were detected in the water samples, showed that these cytostatics cause a significant induction of DNA damage only at concentrations that are substantially higher than those in the native waters. These findings indicate that other chemicals, possibly quaternary ammonium compounds, account for the effects of the hospital wastewaters.

Collaboration


Dive into the Miroslav Mišík's collaboration.

Top Co-Authors

Avatar

Armen Nersesyan

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franziska Ferk

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Kundi

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Wultsch

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Halh Al-Serori

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Hoelzl

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge