Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siegfried Knasmueller is active.

Publication


Featured researches published by Siegfried Knasmueller.


Mutation Research-reviews in Mutation Research | 2008

The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps

Nina Holland; Claudia Bolognesi; Micheline Kirsch-Volders; Stefano Bonassi; Errol Zeiger; Siegfried Knasmueller; Michael Fenech

The micronucleus (MN) assay in exfoliated buccal cells is a useful and minimally invasive method for monitoring genetic damage in humans. This overview has concluded that although MN assay in buccal cells has been used since the 1980s to demonstrate cytogenetic effects of environmental and occupational exposures, lifestyle factors, dietary deficiencies, and different diseases, important knowledge gaps remain about the characteristics of micronuclei and other nuclear abnormalities, the basic biology explaining the appearance of various cell types in buccal mucosa samples and effects of diverse staining procedures and scoring criteria in laboratories around the world. To address these uncertainties, the human micronucleus project (HUMN; see http://www.humn.org) has initiated a new international validation project for the buccal cell MN assay similar to that previously performed using human lymphocytes. Future research should explore sources of variability in the assay (e.g. between laboratories and scorers, as well as inter- and intra-individual differences in subjects), and resolve key technical issues, such as the method of buccal cell staining, optimal criteria for classification of normal and degenerated cells and for scoring micronuclei and other abnormalities. The harmonization and standardization of the buccal MN assay will allow more reliable comparison of the data among human populations and laboratories, evaluation of the assays performance, and consolidation of its world-wide use for biomonitoring of DNA damage.


Nature Protocols | 2009

Buccal micronucleus cytome assay

Philip Thomas; Nina Holland; Claudia Bolognesi; Micheline Kirsch-Volders; Stefano Bonassi; Errol Zeiger; Siegfried Knasmueller; Michael Fenech

The Buccal Micronucleus Cytome (BMCyt) assay is a minimally invasive method for studying DNA damage, chromosomal instability, cell death and the regenerative potential of human buccal mucosal tissue. This method is increasingly used in molecular epidemiological studies for investigating the impact of nutrition, lifestyle factors, genotoxin exposure and genotype on DNA damage, chromosome malsegregation and cell death. The biomarkers measured in this assay have been associated with increased risk of accelerated ageing, cancer and neurodegenerative diseases. This protocol describes one of the current established methods for buccal cell collection using a small-headed toothbrush, the generation of a single-cell suspension, slide preparation using cytocentrifugation, fixation and staining using Feulgen and Light Green for both bright field and fluorescence microscopic analysis. The scoring criteria for micronuclei and other nuclear anomalies are also described in detail. The protocol in its current form takes approximately 4 h to complete from the time of buccal cell collection to the generation of stained slides for microscopic analysis.


The FASEB Journal | 2005

Green tea extract and (–)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities

Leonilla Elbling; Rosa-Maria Weiss; Olga Teufelhofer; Maria Uhl; Siegfried Knasmueller; Rolf Schulte-Hermann; Walter Berger; Michael Micksche

Green tea is the most widely consumed beverage. It has attained high reputation as a health‐promoting dietary component ascribed to the antioxidant activity of (−)‐epigallocatechin‐3‐gallate (EGCG), its main polyphenolic constituent. Evidence is increasing that tea constituents can be cell damaging and pro‐oxidant themselves. These effects were suggested to be due to spontaneous H2O2 generation by polyphenols in solution. In the present study, we investigated the oxidant and antioxidant properties of green tea extracts (GTE) and of EGCG by means of the rodent macrophage‐like RAW 264.7 and human promyelocytic leukemic HL60 cell lines. The results obtained show that both under cell‐free conditions and in the presence of cells the oxidant activities of GTE and EGCG exceeded those of spontaneously generated H2O2 (FOX assay). Increase of intracellular oxidative stress was indicated by 2′,7′‐dichlorofluorescin probing, and the enhanced genotoxicity was demonstrated by the alkaline comet assay and by the micronucleus assay (cytokinesis block). Time‐ and dose‐dependent induction of cell death was monitored by trypan blue exclusion, MTT assay, and Hoechst staining. Furthermore, in our systems in vitro, EGCG neither directly scavenges H2O2 nor mediates other antioxidant activities but rather increased H2O2‐induced oxidative stress and DNA damage. In conclusion, our data suggest that detailed mechanistic studies on the effects of GTE and EGCG should be performed in vivo before excessive intake and/or topical application of green tea products can be recommended to healthy and/or diseased persons.


Mutation Research-reviews in Mutation Research | 2011

The HUman MicroNucleus project on eXfoLiated buccal cells (HUMNXL): The role of life-style, host factors, occupational exposures, health status, and assay protocol

Stefano Bonassi; Erdem Coskun; Marcello Ceppi; Cecilia Lando; Claudia Bolognesi; Sema Burgaz; Nina Holland; Micheline Kirsh-Volders; Siegfried Knasmueller; Errol Zeiger; Deyanira Carnesoltas; Delia Cavallo; Juliana da Silva; Vanessa Moraes de Andrade; Gonca Cakmak Demircigil; Aníbal Domínguez Odio; Hamiyet Donmez-Altuntas; Gilka Jorge Figaro Gattás; Ashok K. Giri; Sarbani Giri; Belinda C. Gómez-Meda; Sandra Gómez-Arroyo; Valeria Hadjidekova; Anja Haverić; Mala Kamboj; Kemajl Kurteshi; Maria Grazia Martino-Roth; Regina Montero Montoya; Armen Nersesyan; Susana Pastor-Benito

The human buccal micronucleus cytome assay (BMCyt) is one of the most widely used techniques to measure genetic damage in human population studies. Reducing protocol variability, assessing the role of confounders, and estimating a range of reference values are research priorities that will be addressed by the HUMN(XL) collaborative study. The HUMN(XL) project evaluates the impact of host factors, occupation, life-style, disease status, and protocol features on the occurrence of MN in exfoliated buccal cells. In addition, the study will provide a range of reference values for all cytome endpoints. A database of 5424 subjects with buccal MN values obtained from 30 laboratories worldwide was compiled and analyzed to investigate the influence of several conditions affecting MN frequency. Random effects models were mostly used to investigate MN predictors. The estimated spontaneous MN frequency was 0.74‰ (95% CI 0.52-1.05). Only staining among technical features influenced MN frequency, with an abnormal increase for non-DNA-specific stains. No effect of gender was evident, while the trend for age was highly significant (p<0.001). Most occupational exposures and a diagnosis of cancer significantly increased MN and other endpoints frequencies. MN frequency increased in heavy smoking (≥40cig/day, FR=1.37; 95% CI 1.03-.82) and decreased with daily fruit consumption (FR=0.68; 95% CI 0.50-0.91). The results of the HUMN(XL) project identified priorities for validation studies, increased the basic knowledge of the assay, and contributed to the creation of a laboratory network which in perspective may allow the evaluation of disease risk associated with MN frequency.


Mutagenesis | 2011

The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells—past, present and future

Michael Fenech; Nina Holland; Errol Zeiger; Wushou P. Chang; Sema Burgaz; Philip Thomas; Claudia Bolognesi; Siegfried Knasmueller; Micheline Kirsch-Volders; Stefano Bonassi

The International Human Micronucleus (HUMN) Project (www.humn.org) was founded in 1997 to coordinate worldwide research efforts aimed at using micronucleus (MN) assays to study DNA damage in human populations. The central aims were to (i) collect databases on baseline MN frequencies and associated methodological, demographic, genetic and exposure variables, (ii) determine those variables that affect MN frequency, (iii) establish standardised protocols for performing assays so that data comparisons can be made more reliably across laboratories and countries and (iv) evaluate the association of MN frequency with disease outcomes both cross-sectionally and prospectively. In the first 10 years of the HUMN project, all of these objectives were achieved successfully for the MN assay using the cytokinesis-block micronucleus (CBMN) assay in human peripheral blood lymphocytes and the findings were published in a series of papers that are among the most highly cited in the field. The CBMN protocol and scoring criteria are now standardised; the effect of age, gender and smoking status have been defined, and it was shown prospectively using a database of almost 7000 subjects that an increased MN frequency in lymphocytes predicts cancer risk. More recently in 2007, the HUMN coordinating group decided to launch an equivalent project focussed on the human MN assay in buccal epithelial cells because it provides a complementary method for measuring MN in a tissue that is easily accessible and does not require tissue culture. This new international project is now known as the human MN assay in exfoliated cells (HUMN(xL)). At present, a database for >5000 subjects worldwide has been established for the HUMN(xL) project. The inter-laboratory slide-scoring exercise for the HUMN(xL) project is at an advanced stage of planning and the analyses of data for methodological, demographic, genetic, lifestyle and exposure variables are at a final stage of completion. Future activities will be aimed at (i) defining the genetic variables that affect MN frequencies, (ii) validation of the various automated scoring systems based on image analysis, flow cytometry and laser scanning cytometry, (iii) standardisation of protocols for scoring micronuclei (MNi) in cells from other tissues, e.g. erythrocyte and nasal cells and (iv) prospective association studies with pregnancy complications, developmental defects, childhood cancers, cardiovascular disease and neurodegenerative diseases.


Mutation Research-reviews in Mutation Research | 2013

The HUMNxl scoring criteria for different cell types and nuclear anomalies in the buccal micronucleus cytome assay - an update and expanded photogallery.

Claudia Bolognesi; Siegfried Knasmueller; Armen Nersesyan; Philip Thomas; Michael Fenech

The buccal micronucleus cytome assay is a minimally invasive cytological and interphase cytogenetic technique for measuring DNA damage and cell death biomarkers in the oral epithelium. In this report we provide an updated and more comprehensive version of the cellular and nuclear scoring criteria used in the assay accompanied with a photogallery of the various cell types and nuclear anomalies. These detailed scoring criteria complement previous published protocols of this assay and form the basis for guiding intra- and inter-laboratory slide scoring comparisons. The scoring criteria update described in this paper is the outcome of ongoing efforts of the HUMN and HUMNxl projects (www.humn.org) to standardize the application of micronucleus assay for use in human biomonitoring and to update procedures as knowledge on mechanisms and technical capability improvements.


Mutation Research-reviews in Mutation Research | 2014

Commentary: Critical questions, misconceptions and a road map for improving the use of the lymphocyte cytokinesis-block micronucleus assay for in vivo biomonitoring of human exposure to genotoxic chemicals—A HUMN project perspective ☆

Micheline Kirsch-Volders; Stefano Bonassi; Siegfried Knasmueller; Nina Holland; Claudia Bolognesi; Michael Fenech

The lymphocyte cytokinesis-block micronucleus (CBMN) assay has been applied in hundreds of in vivo biomonitoring studies of humans exposed to genotoxic chemicals because it allows the measurement of both structural and numerical chromosome aberrations. The CBMN cytome assay version which, apart from measuring micronuclei (MN) already present in cells in vivo or expressed ex vivo, also includes measurement of nucleoplasmic bridges (NPB), nuclear buds (NBUD), necrosis and apoptosis, is also increasingly being used in such studies. Because of the numerous published studies there is now a need to re-evaluate the use of MN and other biomarkers within the lymphocyte CBMN cytome assay as quantitative indicators of exposure to chemical genotoxins and the genetic hazard this may cause. This review has identified some important misconceptions as well as knowledge gaps that need to be addressed to make further progress in the proper application of this promising technique and enable its full potential to be realised. The HUMN project consortium recommends a three pronged approach to further improve the knowledge base and application of the lymphocyte CBMN cytome assay to measure DNA damage in humans exposed to chemical genotoxins: (i) a series of systematic reviews, one for each class of chemical genotoxins, of studies which have investigated the association of in vivo exposure in humans with MN, NPB and NBUD induction in lymphocytes; (ii) a comprehensive analysis of the literature to obtain new insights on the potential mechanisms by which different classes of chemicals may induce MN, NPB and NBUD in vitro and in vivo and (iii) investigation of the potential advantages of using the lymphocyte CBMN cytome assay in conjunction with other promising complementary DNA damage diagnostics to obtain an even more complete assessment of the DNA damage profile induced by in vivo exposure to chemical genotoxins in humans.


Mutagenesis | 2011

Impact of smoking on the frequencies of micronuclei and other nuclear abnormalities in exfoliated oral cells: a comparative study with different cigarette types

Armen Nersesyan; Rafael Muradyan; Michael Kundi; Siegfried Knasmueller

The primary aim of the study was to investigate the impact of tar and nicotine contents of cigarettes on chromosomal damage in oral mucosa cells of smokers. We monitored the effect of smoking different cigarette types (i.e., of ultralight filter, light filter, medium filter and unfiltered cigarettes) on induction of nuclear anomalies including micronuclei (MN), broken eggs (BE), binucleates (BN), condensed chromatin (CC), karyorrhexis (KR), karyolysis (KL) and pyknosis (P) in exfoliated buccal cells. The cells were collected from 83 healthy heavy smokers (n=15-25/group) consuming a similar number of cigarettes (26-33) per day and from never smokers as controls (n=20). The frequencies of KR, CC, KL, BE and BN were increased significantly only in smokers of medium (MF) and non-filtered (NF) types of cigarettes while MN levels were only elevated (p < 0.0001) in the group that smoked NF cigarettes. Since BN and BE were increased (p < 00001) as a consequence of exposure to lower levels of toxic constituents in tobacco, it suggests that these endpoints, which both reflect DNA damage, are more sensitive than MN, which is the only parameter scored in most earlier studies. The induction of MN, BN, KR and KL increased significantly with daily tar exposure and decreased simultaneously with daily nicotine uptake (in all cases, P was < 0.0001). These findings also suggest that nicotine potentially protects cells against DNA reactive carcinogens contained in tobacco smoke although earlier in vitro and animal studies showed that the alkaloid induces DNA damage per se. A significant inverse correlation between the frequencies of endpoints such as cells with MN (- 1.56), MN (-1.69), BN (-1.36), KR (-1.10) and KL (-1.87) with the nicotine levels in cigarettes was found. However, this observation requires further verification by a controlled intervention study. In case it can be substantiated it will have an impact on the ongoing discussion of the health risks associated with nicotine replacement therapy.


Water Research | 2011

Impact of ozonation on the genotoxic activity of tertiary treated municipal wastewater

Miroslav Mišík; Siegfried Knasmueller; Franziska Ferk; Margit Cichna-Markl; Tamara Grummt; Heidi Schaar; Norbert Kreuzinger

Ozonation is an emerging technology for the removal of micropollutants from treated wastewater. Aim of the present study was to investigate the impact of ozone treatment on genotoxic and acute toxic effects of tertiary treated municipal wastewater. It is known that DNA-damaging chemicals cause adverse effects in the environment and that exposure to humans leads to cancer and other diseases. Toxicity was tested in organisms from three trophic levels namely in bacteria (Salmonella/microsome assays) which enable the detection of gene mutations, in a plant bioassay (micronucleus assay with root tip cells of Allium cepa) which reflects clastogenic and aneugenic effects and in single cell gel electrophoresis (SCGE) tests with mammalian cells which detect DNA migration caused by single-, double strand breaks and alkali labile sites. In the bacterial tests negative results were obtained with untreated samples but after concentration with C(18) cartridges a positive result was found in strains TA1537 and TA98 which are sensitive to frameshift mutagens while no mutations were induced in other tester strains (TA100, TA102 and YG1024). Ozone treatment led to a decrease of the mutagenic activity of the samples. In the SCGE experiments, DNA migration was detected with the unconcentrated effluent of the treatment plant and ozonation led to a substantial decrease of this effect. In the plant bioassays, negative results were obtained with the effluent and ozone treatment did not cause an alteration of the micronucleus frequencies. Also acute toxic effects were monitored in the different indicator organisms under all experimental conditions. The bacteriocidal/bacteriostatic effects which were seen with the concentrated samples were reduced by ozonation. In the experiments with the eukaryotic (plant and animal) cells no acute toxicity was seen with the effluents and ozonation had no impact on their viability. In conclusion findings of this study indicate that ozonation of tertiary effluents of a municipal treatment plant reduces the adverse effects caused by release of mutagens in aquatic ecosystems and does not decrease the viability of bacteria and eukaryotic cells. However, future research is required to find out if, and to which extent these findings can be generalized and which mechanisms account for the detoxification of the wastewater.


Mutation Research-reviews in Mutation Research | 2015

Clinical application of micronucleus test in exfoliated buccal cells: A systematic review and metanalysis.

Claudia Bolognesi; Stefano Bonassi; Siegfried Knasmueller; Michael Fenech; Marco Bruzzone; Cecilia Lando; Marcello Ceppi

The micronucleus assay in uncultured exfoliated buccal mucosa cells, involving minimally invasive sampling, was successfully applied to evaluate inhalation and local exposure to genotoxic agents, impact of nutrition and lifestyle factors. The potential use of the assay in clinics to monitor the development of local oral lesions and as an early biomarker for tumors and different chronic disorders was also investigated. A systematic review of the literature was carried out focusing on the clinical application of the assay. The literature search updated to January 2015 allowed to retrieve 42 eligible articles. Fifty three percent of investigations are related to oral, head and neck cancer, and premalignant oral diseases. Our analysis evidences a potential usefulness of the MN assay applied in buccal exfoliated cells in the prescreening and in the follow up of precancerous oral lesions. A significant excess of MN, in patients compared with matched controls was observed for subgroups of oral and neck cancer (meta-MR of 2.40, 95% CI: 2.02-2.85) and leukoplakia (meta-MR 1.88, 95% CI: 1.51-2.35). The meta-analysis of studies available on other tumors (meta-MR 2.00; 95% CI:1.66-2.41) indicates that the MN frequency in buccal cells could reflect the chromosomal instability of other organs. Increased MN frequency was also observed in small size studies on patients with chronic diseases, with Alzheimers disease and with Down syndrome. The application of the cytome approach providing information of genotoxic, cytotoxic and cytostatic effects is suggestive of the possibility of an improvement in the predictive value of the assay and this deserves further investigations.

Collaboration


Dive into the Siegfried Knasmueller's collaboration.

Top Co-Authors

Avatar

Armen Nersesyan

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Miroslav Mišík

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Kundi

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Fenech

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Claudia Bolognesi

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Georg Wultsch

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Nina Holland

University of California

View shared research outputs
Top Co-Authors

Avatar

Stefano Bonassi

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Franziska Ferk

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge