Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Misako Nakayama is active.

Publication


Featured researches published by Misako Nakayama.


Nature | 2009

In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses

Yasushi Itoh; Kyoko Shinya; Maki Kiso; Tokiko Watanabe; Yoshihiro Sakoda; Masato Hatta; Yukiko Muramoto; Daisuke Tamura; Yuko Sakai-Tagawa; Takeshi Noda; Saori Sakabe; Masaki Imai; Yasuko Hatta; Shinji Watanabe; Chengjun Li; S. Yamada; Ken Fujii; Shin Murakami; Hirotaka Imai; Satoshi Kakugawa; Mutsumi Ito; Ryo Takano; Kiyoko Iwatsuki-Horimoto; Masayuki Shimojima; Taisuke Horimoto; Hideo Goto; Kei Takahashi; Akiko Makino; Hirohito Ishigaki; Misako Nakayama

Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.


Antimicrobial Agents and Chemotherapy | 2011

Efficacy of Single Intravenous Injection of Peramivir against Influenza B Virus Infection in Ferrets and Cynomolgus Macaques

Mitsutaka Kitano; Yasushi Itoh; Makoto Kodama; Hirohito Ishigaki; Misako Nakayama; Hideaki Ishida; Kaoru Baba; Takahiro Noda; Kenji Sato; Yoichiro Nihashi; Takushi Kanazu; Ryu Yoshida; Ryuzo Torii; Akihiko Sato; Kazumasa Ogasawara

ABSTRACT We evaluated the efficacy of a single intravenous dose peramivir for treatment of influenza B virus infection in ferrets and cynomolgus macaques in the present study. A single dose of peramivir (60 mg/kg of body weight) given to ferrets on 1 day postinfection with influenza B virus significantly reduced median area under the curve (AUC) virus titers (peramivir, 8.3 log10 50% tissue culture infective doses [TCID50s]·day/ml; control, 10.7 log10 TCID50s·day/ml; P < 0.0001). Furthermore, nasal virus titers on day 2 postinfection in ferrets receiving a single injection of peramivir (30 mg/kg) and AUCs of the body temperature increase in ferrets receiving a single injection of peramivir (30 and 60 mg/kg) were lower than those in ferrets administered oral oseltamivir phosphate (30 and 60 mg/kg/day twice daily for 3 days). In macaques infected with influenza B virus, viral titers in the nasal swab fluid on days 2 and 3 postinfection and body temperature after a single injection of peramivir (30 mg/kg) were lower than those after oral administration of oseltamivir phosphate (30 mg/kg/day for 5 days). The two animal models used in the present study demonstrated that inhibition of viral replication at the early time point after infection was critical in reduction of AUCs of virus titers and interleukin-6 production, resulting in amelioration of symptoms. Our results shown in animal models suggest that the early treatment with a single intravenous injection of peramivir is clinically recommended to reduce symptoms effectively in influenza B virus infection.


Antimicrobial Agents and Chemotherapy | 2015

Emergence of H7N9 Influenza A Virus Resistant to Neuraminidase Inhibitors in Nonhuman Primates

Yasushi Itoh; Shintaro Shichinohe; Misako Nakayama; Manabu Igarashi; Akihiro Ishii; Hirohito Ishigaki; Hideaki Ishida; Naoko Kitagawa; Takako Sasamura; Masanori Shiohara; Michiko Doi; Hideaki Tsuchiya; Shinichiro Nakamura; Masatoshi Okamatsu; Yoshihiro Sakoda; Hiroshi Kida; Kazumasa Ogasawara

ABSTRACT The number of patients infected with H7N9 influenza virus has been increasing since 2013. We examined the efficacy of neuraminidase (NA) inhibitors and the efficacy of a vaccine against an H7N9 influenza virus, A/Anhui/1/2013 (H7N9), isolated from a patient in a cynomolgus macaque model. NA inhibitors (oseltamivir and peramivir) barely reduced the total virus amount because of the emergence of resistant variants with R289K or I219T in NA [residues 289 and 219 in N9 of A/Anhui/1/2013 (H7N9) correspond to 292 and 222 in N2, respectively] in three of the six treated macaques, whereas subcutaneous immunization of an inactivated vaccine derived from A/duck/Mongolia/119/2008 (H7N9) prevented propagation of A/Anhui/1/2013 (H7N9) in all vaccinated macaques. The percentage of macaques in which variant H7N9 viruses with low sensitivity to the NA inhibitors were detected was much higher than that of macaques in which variant H5N1 highly pathogenic influenza virus was detected after treatment with one of the NA inhibitors in our previous study. The virus with R289K in NA was reported in samples from human patients, whereas that with I219T in NA was identified for the first time in this study using macaques, though no variant H7N9 virus was reported in previous studies using mice. Therefore, the macaque model enables prediction of the frequency of emerging H7N9 virus resistant to NA inhibitors in vivo. Since H7N9 strains resistant to NA inhibitors might easily emerge compared to other influenza viruses, monitoring of the emergence of variants is required during treatment of H7N9 influenza virus infection with NA inhibitors.


Vaccine | 2010

Subcutaneous inoculation of a whole virus particle vaccine prepared from a non-pathogenic virus library induces protective immunity against H7N7 highly pathogenic avian influenza virus in cynomolgus macaques

Yasushi Itoh; Hiroichi Ozaki; Hirohito Ishigaki; Yoshihiro Sakoda; Tomoya Nagata; Kosuke Soda; Norikazu Isoda; Taichiro Miyake; Hideaki Ishida; Kiyoko Okamoto; Misako Nakayama; Hideaki Tsuchiya; Ryuzo Torii; Hiroshi Kida; Kazumasa Ogasawara

Development of H7N7 highly pathogenic avian influenza virus (HPAIV) vaccines is an urgent issue since human cases of infection with this subtype virus have been reported and most humans have no immunity against H7N7 viruses. We made an H7N7 vaccine combining components from an influenza virus library of non-pathogenic type A influenza viruses. Antibody and T cell recall responses specific against the vaccine strain were elicited by subcutaneous inoculation with the whole virus particle vaccine with or without alum as an adjuvant in cynomolgus macaques. No significant difference was observed in magnitude of antibody responses between vaccination with alum and vaccination without alum, though vaccination with alum induced longer recall responses of CD8(+) T cells than did vaccination without alum. After challenge with a subtype of H7N7 HPAIV, the virus was detected in nasal swabs of unvaccinated macaques for 8 days but only for 1 day in the animals vaccinated either with or without alum, although the macaques vaccinated with alum showed elevated body temperature more briefly after infection. These findings demonstrated that this H7N7 HPAIV strain is pathogenic to macaques and that the vaccine conferred protective immunity to macaques against H7N7 HPAIV infection.


PLOS Pathogens | 2014

Protective Efficacy of Passive Immunization with Monoclonal Antibodies in Animal Models of H5N1 Highly Pathogenic Avian Influenza Virus Infection

Yasushi Itoh; Reiko Yoshida; Shintaro Shichinohe; Megumi Higuchi; Hirohito Ishigaki; Misako Nakayama; Van Loi Pham; Hideaki Ishida; Mitsutaka Kitano; Masahiko Arikata; Naoko Kitagawa; Yachiyo Mitsuishi; Kazumasa Ogasawara; Hideaki Tsuchiya; Takahiro Hiono; Masatoshi Okamatsu; Yoshihiro Sakoda; Hiroshi Kida; Mutsumi Ito; Le Quynh Mai; Yoshihiro Kawaoka; Hiroko Miyamoto; Mari Ishijima; Manabu Igarashi; Yasuhiko Suzuki; Ayato Takada

Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.


PLOS ONE | 2013

Pathogenicity of pandemic H1N1 influenza A virus in immunocompromised cynomolgus macaques

Van Loi Pham; Misako Nakayama; Yasushi Itoh; Hirohito Ishigaki; Mitsutaka Kitano; Masahiko Arikata; Hideaki Ishida; Naoko Kitagawa; Shintaro Shichinohe; Masatoshi Okamatsu; Yoshihiro Sakoda; Hideaki Tsuchiya; Shinichiro Nakamura; Hiroshi Kida; Kazumasa Ogasawara

Pandemic (H1N1) 2009 influenza virus spread throughout the world since most people did not have immunity against the virus. In the post pandemic phase when many humans might possess immunity against the pandemic virus, one of the concerns is infection in immunocompromised people. Therefore, we used an immunosuppressed macaque model to examine pathogenicity of the pandemic (H1N1) 2009 virus under an immunocompromised condition. The virus in nasal samples of immunosuppressed macaques infected with the pandemic (H1N1) 2009 virus was detected longer after infection than was the virus in nasal samples of immunocompetent macaques. As expected, not only virus amounts but also virus propagation sites in the immunosuppressed macaques were larger than those in lungs of the immunocompetent macaques when they were infected with the pandemic virus. Immunosuppressed macaques possessed low levels of immune cells producing cytokines and chemokines, but levels of inflammatory cytokines/chemokine interleukin (IL)-6, IL-18, and monocyte chemotactic protein (MCP)-1 in lungs of the immunosuppressed macaques were higher than those in lungs of the immunocompetent macaques, though the differences were not statistically significant. Therefore, under an immunosuppressive condition, the pandemic influenza (H1N1) 2009 virus might cause more severe morbidity with high cytokine/chemokine production by the host innate immune system than that seen in macaques under the immunocompetent condition.


Journal of Medical Primatology | 2010

Amelioration of pneumonia with Streptococcus pneumoniae infection by inoculation with a vaccine against highly pathogenic avian influenza virus in a non-human primate mixed infection model

Taichiro Miyake; Kosuke Soda; Yasushi Itoh; Yoshihiro Sakoda; Hirohito Ishigaki; Tomoya Nagata; Hideaki Ishida; Misako Nakayama; Hiroichi Ozaki; Hideaki Tsuchiya; Ryuzo Torii; Hiroshi Kida; Kazumasa Ogasawara

Background  Highly pathogenic avian influenza virus (HPAIV) infection has a high mortality rate in humans. Secondary bacterial pneumonia with HPAIV infection has not been reported in human patients, whereas seasonal influenza viruses sometimes enhance bacterial pneumonia, resulting in substantial morbidity and mortality. Therefore, if HPAIV infection were accompanied by bacterial infection, an increase in mortality would be expected. We examined whether a vaccine against HPAIV prevents severe morbidity caused by mixed infection with HPAIV and bacteria.


PLOS ONE | 2013

Protection against H5N1 highly pathogenic avian and pandemic (H1N1) 2009 influenza virus infection in cynomolgus monkeys by an inactivated H5N1 whole particle vaccine

Misako Nakayama; Shintaro Shichinohe; Yasushi Itoh; Hirohito Ishigaki; Mitsutaka Kitano; Masahiko Arikata; Van Loi Pham; Hideaki Ishida; Naoko Kitagawa; Masatoshi Okamatsu; Yoshihiro Sakoda; Takaya Ichikawa; Hideaki Tsuchiya; Shinichiro Nakamura; Quynh Mai Le; Mutsumi Ito; Yoshihiro Kawaoka; Hiroshi Kida; Kazumasa Ogasawara

H5N1 highly pathogenic avian influenza virus (HPAIV) infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3), in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1) 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3.


PLOS ONE | 2012

Memory Immune Responses against Pandemic (H1N1) 2009 Influenza Virus Induced by a Whole Particle Vaccine in Cynomolgus Monkeys Carrying Mafa-A1*052∶02

Masahiko Arikata; Yasushi Itoh; Masatoshi Okamatsu; Toshinaga Maeda; Takashi Shiina; Keiko Tanaka; Shingo Suzuki; Misako Nakayama; Yoshihiro Sakoda; Hirohito Ishigaki; Ayato Takada; Hideaki Ishida; Kosuke Soda; Van Loi Pham; Hideaki Tsuchiya; Shinichiro Nakamura; Ryuzo Torii; Takeshi Shimizu; Hidetoshi Inoko; Iwao Ohkubo; Hiroshi Kida; Kazumasa Ogasawara

We made an H1N1 vaccine candidate from a virus library consisting of 144 ( = 16 HA×9 NA) non-pathogenic influenza A viruses and examined its protective effects against a pandemic (2009) H1N1 strain using immunologically naïve cynomolgus macaques to exclude preexisting immunity and to employ a preclinical study since preexisting immunity in humans previously vaccinated or infected with influenza virus might make comparison of vaccine efficacy difficult. Furthermore, macaques carrying a major histocompatibility complex class I molecule, Mafa-A1*052∶02, were used to analyze peptide-specific CD8+ T cell responses. Sera of macaques immunized with an inactivated whole particle formulation without addition of an adjuvant showed higher neutralization titers against the vaccine strain A/Hokkaido/2/1981 (H1N1) than did sera of macaques immunized with a split formulation. Neutralization activities against the pandemic strain A/Narita/1/2009 (H1N1) in sera of macaques immunized twice with the split vaccine reached levels similar to those in sera of macaques immunized once with the whole particle vaccine. After inoculation with the pandemic virus, the virus was detected in nasal samples of unvaccinated macaques for 6 days after infection and for 2.67 days and 5.33 days on average in macaques vaccinated with the whole particle vaccine and the split vaccine, respectively. After the challenge infection, recall neutralizing antibody responses against the pandemic virus and CD8+ T cell responses specific for nucleoprotein peptide NP262-270 bound to Mafa-A1*052∶02 in macaques vaccinated with the whole particle vaccine were observed more promptly or more vigorously than those in macaques vaccinated with the split vaccine. These findings demonstrated that the vaccine derived from our virus library was effective for pandemic virus infection in macaques and that the whole particle vaccine conferred more effective memory and broader cross-reactive immune responses to macaques against pandemic influenza virus infection than did the split vaccine.


Virology | 2010

Establishment of a cynomolgus macaque model of influenza B virus infection

Mitsutaka Kitano; Yasushi Itoh; Makoto Kodama; Hirohito Ishigaki; Misako Nakayama; Tomoya Nagata; Hideaki Ishida; Hideaki Tsuchiya; Ryuzo Torii; Keiko Baba; Ryu Yoshida; Akihiko Sato; Kazumasa Ogasawara

Pathogenicity of influenza B virus was examined in cynomolgus macaques to establish a macaque model suitable for vaccine and antiviral drug development. We prepared influenza B viruses for inoculation with minimal passages after isolation from patients. Macaques inoculated with influenza B virus showed higher body temperature than that before infection for 6 to 12 days. Virus was detected in nasal, tracheal, and bronchial samples until 6 days after inoculation followed by an increase in neutralizing antibody. High levels of IL-6 and TNF-α in nasal swabs from the infected macaques were correlated with fever. Symptoms and duration of the viral replication would be sufficient to evaluate efficacy of vaccines and antiviral agents. In addition, measurement of immune responses including antibody and cytokine production would provide an immunological rationale in efficacy of vaccines and antiviral agents. The results suggest that cynomolgus macaques are appropriate model animals for research of influenza B virus.

Collaboration


Dive into the Misako Nakayama's collaboration.

Top Co-Authors

Avatar

Hirohito Ishigaki

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Kazumasa Ogasawara

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Yasushi Itoh

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideaki Ishida

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideaki Tsuchiya

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge