Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mita M. Shah is active.

Publication


Featured researches published by Mita M. Shah.


Development | 2004

Branching morphogenesis and kidney disease

Mita M. Shah; Rosemary V. Sampogna; Hiroyuki Sakurai; Kevin T. Bush; Sanjay K. Nigam

Branching morphogenesis in the kidney is a tightly regulated, complex process and its disruption potentially can lead to a broad spectrum of diseases, ranging from rare hereditary syndromes to common conditions such as hypertension and chronic kidney failure. This review synthesizes data on branching during kidney development derived from in vitro and in vivo rodent studies and to apply them to human diseases. It discusses how the broad organization of molecular interactions during kidney development might provide a mechanistic framework for understanding disorders related to aberrant branching.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Staged in vitro reconstitution and implantation of engineered rat kidney tissue

Eran Rosines; R. V. Sampogna; Kohei Johkura; Duke A. Vaughn; Yohan Choi; Hiroyuki Sakurai; Mita M. Shah; Sanjay K. Nigam

A major hurdle for current xenogenic-based and other approaches aimed at engineering kidney tissues is reproducing the complex three-dimensional structure of the kidney. Here, a stepwise, in vitro method of engineering rat kidney-like tissue capable of being implanted is described. Based on the fact that the stages of kidney development are separable into in vitro modules, an approach was devised that sequentially induces an epithelial tubule (the Wolffian duct) to undergo in vitro budding, followed by branching of a single isolated bud and its recombination with metanephric mesenchyme. Implantation of the recombined tissue results in apparent early vascularization. Thus, in principle, an unbranched epithelial tubular structure (potentially constructed from cultured cells) can be induced to form kidney tissue such that this in vitro engineered tissue is capable of being implanted in host rats and developing glomeruli with evidence of early vascularization. Optimization studies (of growth factor and matrix) indicate multiple suitable combinations and suggest both a most robust and a minimal system. A whole-genome microarray analysis suggested that recombined tissue recapitulated gene expression changes that occur in vivo during later stages of kidney development, and a functional assay demonstrated that the recombined tissue was capable of transport characteristic of the differentiating nephron. The approach includes several points where tissue can be propagated. The data also show how functional, 3D kidney tissue can assemble by means of interactions of independent modules separable in vitro, potentially facilitating systems-level analyses of kidney development.


Developmental Biology | 2011

Growth factor-dependent branching of the ureteric bud is modulated by selective 6-O sulfation of heparan sulfate.

Mita M. Shah; Hiroyuki Sakurai; Thomas F. Gallegos; Derina E. Sweeney; Kevin T. Bush; Jeffrey D. Esko; Sanjay K. Nigam

Heparan sulfate proteoglycans (HSPGs) are found in the basement membrane and at the cell-surface where they modulate the binding and activity of a variety of growth factors and other molecules. Most of the functions of HSPGs are mediated by the variable sulfated glycosaminoglycan (GAG) chains attached to a core protein. Sulfation of the GAG chain is key as evidenced by the renal agenesis phenotype in mice deficient in the HS biosynthetic enzyme, heparan sulfate 2-O sulfotransferase (Hs2st; an enzyme which catalyzes the 2-O-sulfation of uronic acids in heparan sulfate). We have recently demonstrated that this phenotype is likely due to a defect in induction of the metanephric mesenchyme (MM), which along with the ureteric bud (UB), is responsible for the mutually inductive interactions in the developing kidney (Shah et al., 2010). Here, we sought to elucidate the role of variable HS sulfation in UB branching morphogenesis, particularly the role of 6-O sulfation. Endogenous HS was localized along the length of the UB suggesting a role in limiting growth factors and other molecules to specific regions of the UB. Treatment of cultures of whole embryonic kidney with variably desulfated heparin compounds indicated a requirement of 6O-sulfation in the growth and branching of the UB. In support of this notion, branching morphogenesis of the isolated UB was found to be more sensitive to the HS 6-O sulfation modification when compared to the 2-O sulfation modification. In addition, a variety of known UB branching morphogens (i.e., pleiotrophin, heregulin, FGF1 and GDNF) were found to have a higher affinity for 6-O sulfated heparin providing additional support for the notion that this HS modification is important for robust UB branching morphogenesis. Taken together with earlier studies, these findings suggest a general mechanism for spatio-temporal HS regulation of growth factor activity along the branching UB and in the developing MM and support the view that specific growth factor-HSPG interactions establish morphogen gradients and function as developmental switches during the stages of epithelial organogenesis (Shah et al., 2004).


Developmental Biology | 2010

HS2ST MEDIATED KIDNEY MESENCHYME INDUCTION REGULATES EARLY URETERIC BUD BRANCHING

Mita M. Shah; Hiroyuki Sakurai; Derina E. Sweeney; Thomas F. Gallegos; Kevin T. Bush; Jeffrey D. Esko; Sanjay K. Nigam

Heparan sulfate proteoglycans (HSPGs) are central modulators of developmental processes likely through their interaction with growth factors, such as GDNF, members of the FGF and TGFbeta superfamilies, EGF receptor ligands and HGF. Absence of the biosynthetic enzyme, heparan sulfate 2-O-sulfotransferase (Hs2st) leads to kidney agenesis. Using a novel combination of in vivo and in vitro approaches, we have reanalyzed the defect in morphogenesis of the Hs2st(-)(/)(-) kidney. Utilizing assays that separately model distinct stages of kidney branching morphogenesis, we found that the Hs2st(-/-) UB is able to undergo branching and induce mesenchymal-to-epithelial transformation when recombined with control MM, and the isolated Hs2st null UB is able to undergo branching morphogenesis in the presence of exogenous soluble pro-branching growth factors when embedded in an extracellular matrix, indicating that the UB is intrinsically competent. This is in contrast to the prevailing view that the defect underlying the renal agenesis phenotype is due to a primary role for 2-O sulfated HS in UB branching. Unexpectedly, the mutant MM was also fully capable of being induced in recombination experiments with wild-type tissue. Thus, both the mutant UB and mutant MM tissue appear competent in and of themselves, but the combination of mutant tissues fails in vivo and, as we show, in organ culture. We hypothesized a 2OS-dependent defect in the mutual inductive process, which could be on either the UB or MM side, since both progenitor tissues express Hs2st. In light of these observations, we specifically examined the role of the HS 2-O sulfation modification on the morphogenetic capacity of the UB and MM individually. We demonstrate that early UB branching morphogenesis is not primarily modulated by factors that depend on the HS 2-O sulfate modification; however, factors that contribute to MM induction are markedly sensitive to the 2-O sulfation modification. These data suggest that key defect in Hs2st null kidneys is the inability of MM to undergo induction either through a failure of mutual induction or a primary failure of MM morphogenesis. This results in normal UB formation but affects either T-shaped UB formation or iterative branching of the T-shaped UB (possibly two separate stages in collecting system development dependent upon HS). We discuss the possibility that a disruption in the interaction between HS and Wnts (e.g. Wnt 9b) may be an important aspect of the observed phenotype. This appears to be the first example of a defect in the MM preventing advancement of early UB branching past the first bifurcation stage, one of the limiting steps in early kidney development.


Developmental Biology | 2010

Protein kinase A regulates GDNF/RET-dependent but not GDNF/Ret-independent ureteric bud outgrowth from the Wolffian duct

James B. Tee; Yohan Choi; Mita M. Shah; Ankur V. Dnyanmote; Derina E. Sweeney; Tom F. Gallegos; Kohei Johkura; Chiharu Ito; Kevin T. Bush; Sanjay K. Nigam

Embryonic kidney development begins with the outgrowth of the ureteric bud (UB) from the Wolffian duct (WD) into the adjacent metanephric mesenchyme (MM). Both a GDNF-dependent and GDNF-independent (Maeshima et al., 2007) pathway have been identified. In vivo and in vitro, the GDNF-dependent pathway is inhibited by BMPs, one of the factors invoked to explain the limitation of UB formation in the unbudded regions of the WD surrounding the UB. However, the exact mechanism remains unknown. Here a previously described in vitro system that models UB budding from the WD was utilized to study this process. Because Protein kinase A (PKA) activation has been shown to prevent migration, morphogenesis and tubulogenesis of epithelial cells (Santos et al., 1993), its activity in budded and non-budded portions of the GDNF-induced WD was analyzed. The level of PKA activity was 15-fold higher in the unbudded portions of the WD compared to budded portions, suggesting that PKA activity plays a key role in controlling the site of UB emergence. Using well-characterized PKA agonists and antagonists, we demonstrated that at various levels of the PKA-signaling hierarchy, PKA regulates UB outgrowth from the WD by suppressing budding events. This process appeared to be PKA-2 isoform specific, and mediated by changes in the duct rather than the surrounding mesenchyme. In addition, it was not due to changes in either the sorting of junctional proteins, cell death, or cell proliferation. Furthermore, the suppressive effect of cAMP on budding did not appear to be mediated by spread to adjacent cells via gap junctions. Conversely, antagonism of PKA activity stimulated UB outgrowth from the WD and resulted in both an increase in the number of buds per unit length of WD as well as a larger surface area per bud. Using microarrays, analysis of gene expression in GDNF-treated WDs in which the PKA pathway had been activated revealed a nearly 14-fold decrease in Ret, a receptor for GDNF. A smaller decrease in GFRα1. a co-receptor for GDNF, was also observed. Using Ret-null WDs, we were able to demonstrate that PKA regulated GDNF-dependent budding but not GDNF-independent pathway for WD budding. We also found that BMP2 was higher in unbudded regions of the GDNF-stimulated WD. Treatment of isolated WDs with BMP2 suppressed budding and resulted in a 3-fold increase in PKA activity. The data suggests that the suppression of budding by BMPs and possibly other factors in non-budded zones of the WD may be regulated in part by increased PKA activity, probably partially through downregulation of Ret/GFRα1 coreceptor expression.


Development | 2009

Neuropeptide Y functions as a facilitator of GDNF-induced budding of the Wolffian duct.

Yohan Choi; James B. Tee; Thomas F. Gallegos; Mita M. Shah; Hideto Oishi; Hiroyuki Sakurai; Shinji Kitamura; Wei Wu; Kevin T. Bush; Sanjay K. Nigam

Ureteric bud (UB) emergence from the Wolffian duct (WD), the initiating step in metanephric kidney morphogenesis, is dependent on GDNF; however, GDNF by itself is generally insufficient to induce robust budding of the isolated WD in culture. Thus, additional factors, presumably peptides or polypeptide growth factors, might be involved. Microarray data from in vivo budding and non-budding conditions were analyzed using non-negative matrix factorization followed by gene ontology filtering and network analysis to identify sets of genes that are highly regulated during budding. These included the GDNF co-receptors GFRα1 and RET, as well as neuropeptide Y (NPY). By using ANOVA with pattern matching, NPY was also found to correlate most significantly to the budded condition with a high degree of connectedness to genes with developmental roles. Exogenous NPY [as well as its homolog, peptide YY (PYY)] augmented GDNF-dependent budding in the isolated WD culture; conversely, inhibition of NPY signaling or perturbation of NPY expression inhibited budding, confirming that NPY facilitates this process. NPY was also found to reverse the decreased budding, the downregulation of RET expression, the mislocalization of GFRα1, and the inhibition of AKT phosphorylation that resulted from the addition of BMP4 to the isolated WD cultures, suggesting that NPY acts through the budding pathway and is reciprocally regulated by GDNF and BMP4. Thus, the outgrowth of the UB from the WD might result from a combination of the upregulation of the GDNF receptors together with genes that support GDNF signaling in a feed-forward loop and/or counteraction of the inhibitory pathway regulated by BMP4.


Case reports in transplantation | 2018

De Novo Postinfectious Glomerulonephritis Secondary to Nephritogenic Streptococci as the Cause of Transplant Acute Kidney Injury: A Case Report and Review of the Literature

Alexander Bullen; Mita M. Shah

Acute kidney injury is common among kidney transplant recipients. Postinfectious glomerulonephritis secondary to nephritogenic streptococci is one of the oldest known etiologies of acute kidney injury in native kidneys but rarely reported among kidney transplant recipients. This report is of a biopsy-proven case of acute kidney injury in a renal allograft recipient caused by de novo poststreptococcal glomerulonephritis.


Developmental Biology | 2004

Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney.

Tobias N. Meyer; Catherine Schwesinger; Kevin T. Bush; Robert O. Stuart; David W. Rose; Mita M. Shah; Duke A. Vaughn; Dylan L. Steer; Sanjay K. Nigam


Developmental Biology | 2004

Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney.

Dylan L. Steer; Mita M. Shah; Kevin T. Bush; Robert O. Stuart; Rosemary V. Sampogna; Tobias N. Meyer; Catherine Schwesinger; Xaiomei Bai; Jeffrey D. Esko; Sanjay K. Nigam


Journal of The American Society of Nephrology | 2009

How Does the Ureteric Bud Branch

Sanjay K. Nigam; Mita M. Shah

Collaboration


Dive into the Mita M. Shah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin T. Bush

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dylan L. Steer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohan Choi

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duke A. Vaughn

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge