Mitan R. Gokulgandhi
University of Missouri–Kansas City
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mitan R. Gokulgandhi.
Current Eye Research | 2011
Megha Barot; Mitan R. Gokulgandhi; Ashim K. Mitra
The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases.
Medicinal Chemistry | 2012
Megha Barot; Mahuya Bagui; Mitan R. Gokulgandhi; Ashim K. Mitra
Poor bioavailability of topically instilled drug is the major concern in the field of ocular drug delivery. Efflux transporters, static and dynamic ocular barriers often possess rate limiting factors for ocular drug therapy. Different formulation strategies like suspension, ointment, gels, nanoparticles, implants, dendrimers and liposomes have been employed in order to improve drug permeation and retention by evading rate limiting factors at the site of absorption. Chemical modification such as prodrug targeting various nutrient transporters (amino acids, peptide and vitamin) has evolved a great deal of interest to improve ocular drug delivery. In this review, we have discussed various prodrug strategies which have been widely applied for enhancing therapeutic efficacy of ophthalmic drugs. The purpose of this review is to provide an update on the utilization of prodrug concept in ocular drug delivery. In addition, this review will highlight ongoing academic and industrial research and development in terms of ocular prodrug design and delivery.
International Journal of Pharmaceutics | 2013
Mitesh Patel; Pranjali Dalvi; Mitan R. Gokulgandhi; Susamita Kesh; Tanvi Kohli; Dhananjay Pal; Ashim K. Mitra
The primary objective of this study is to functionally characterize and provide molecular evidence of large neutral amino acid transporter (LAT1) in human derived prostate cancer cells (PC-3). We carried out the uptake of [3H]-tyrosine to assess the functional activity of LAT1. Reverse transcription-polymerase chain reaction (RT-PCR) analysis is carried out to confirm the molecular expression of LAT1. [3H]-tyrosine uptake is found to be time dependent and linear up to 60 min. The uptake process does not exhibit any dependence on sodium ions, pH and energy. However, it is temperature dependent and found maximal at physiological temperature. The uptake of [3H]-tyrosine demonstrates saturable kinetics with K(m) and V(max) values of 34 ± 3 μM and 0.70 ± 0.02 nanomoles/min/mg protein, respectively. It is strongly inhibited by large neutral (phenylalanine, tryptophan, leucine, isoleucine) and small neutral (alanine, serine, cysteine) but not by basic (lysine and arginine) and acidic (aspartic and glutamic acid) amino acids. Isoleucine-quinidine (Ile-quinidine) prodrug generates a significant inhibitory effect on [3H]-tyrosine uptake suggesting that it is recognized by LAT1. RT-PCR analysis provided a product band at 658 and 840 bp, specific to LAT1 and LAT2, respectively. For the first time, this study demonstrates that LAT1, primarily responsible for the uptake of large neutral amino acids, is functionally active in PC-3 cells. Significant increase in the uptake generated by Ile-quinidine relative to quinidine suggests that LAT1 can be utilized for enhancing the cellular permeation of poor cell permeable anticancer drugs. Furthermore, this cell line can be utilized as an excellent in vitro model for studying the interaction of large neutral amino acid conjugated drugs with LAT1 transporter.
Future Medicinal Chemistry | 2013
Megha Barot; Mitan R. Gokulgandhi; Sulabh Patel; Ashim K. Mitra
Retinal microvascular alterations have been observed during diabetic retinopathy (DR) due to the retinal susceptibility towards subtle pathological alterations. Therefore, retinal microvascular pathology is essential to understand the nature of retinal degenerations during DR. In this review, the role of retinal microvasculature complications during progression of DR, along with recent efforts to normalize such alterations for better therapeutic outcome, will be underlined. In addition, current therapeutics and future directions for advancement of standard treatment for DR patients will be discussed.
Pharmaceutical Development and Technology | 2013
Ripal Gaudana; Mitan R. Gokulgandhi; Varun Khurana; Deep Kwatra; Ashim K. Mitra
Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.
Journal of Pharmaceutical Sciences | 2012
Mitan R. Gokulgandhi; Megha Barot; Mahuya Bagui; Dhananjay Pal; Ashim K. Mitra
Cidofovir (CDF) and its cyclic analogue (cCDF) have shown potential in vitro and in vivo antiviral activity against cytomegalovirus (CMV) retinitis. However, hydrophilic nature of CDF may affect cell permeation across lipophilic epithelium and thus limit its effectiveness in the treatment of CMV retinitis. In the present study, we have tested a novel hypothesis, which involves chemical derivatization of cCDF into lipophilic transporter-targeted prodrug [via conjugation with different carbon chain length of lipid raft and targeting moiety (biotin) for sodium-dependent multivitamin transporter (SMVT)]. We have synthesized and characterized three derivatives of cCDF including biotin B-C2-cCDF, B-C6-cCDF, and B-C12-cCDF. Physicochemical properties such as solubility, partition coefficient (n-octanol/water and ocular tissue), bioreversion kinetics, and interaction with SMVT transporter have been determined. Among these novel conjugates, B-C12-cCDF has shown higher interaction to SMVT transporter with lowest half maximal inhibitory concentration value, higher cellular accumulation, and high tissue partitioning. Improvement in physicochemical properties, lipophilicity, and interaction with transporter was observed in the trend of increasing the lipid chain length, that is, B-C12-cCDF > B-C6-cCDF > B-C2-cCDF. These results indicate that transporter-targeted lipid analogue of cCDF exhibits improved cellular accumulation along with higher transporter affinity and hence could be a viable strategy for the treatment of CMV retinitis.
Pharmaceuticals | 2014
Mitesh Patel; Nanda K. Mandava; Mitan R. Gokulgandhi; Dhananjay Pal; Ashim K. Mitra
Poor systemic concentrations of lopinavir (LPV) following oral administration occur due to high cellular efflux by P-glycoprotein (P-gp) and multidrug resistance-associated proteins (MRPs) and extensive metabolism by CYP3A4 enzymes. In this study, amino acid prodrugs of LPV were designed and investigated for their potential to circumvent efflux processes and first pass effects. Three amino acid prodrugs were synthesized by conjugating isoleucine, tryptophan and methionine to LPV. Prodrug formation was confirmed by the LCMS/MS and NMR technique. Interaction of LPV prodrugs with efflux proteins were carried out in P-gp (MDCK-MDR1) and MRP2 (MDCK-MRP2) transfected cells. Aqueous solubility studies demonstrated that prodrugs generate higher solubility relative to LPV. Prodrugs displayed higher stability under acidic conditions and degraded significantly with rise in pH. Uptake and transport data suggested that prodrugs carry significantly lower affinity towards P-gp and MRP2 relative to LPV. Moreover, prodrugs exhibited higher liver microsomal stability relative to LPV. Hence, amino acid prodrug modification might be a viable approach for enhancing LPV absorption across intestinal epithelial and brain endothelial cells which expresses high levels of P-gp and MRP2.
International Journal of Pharmaceutics | 2015
Ravi Vaishya; Abhirup Mandal; Mitan R. Gokulgandhi; Sulabh Patel; Ashim K. Mitra
Acylation of peptide has been reported for a number of peptides and proteins during release from polymers comprising of lactide and glycolide. We hypothesize that reversible hydrophobic ion-pairing (HIP) complex may minimize octreotide acylation during release. Sodium dodecyl sulfate (SDS), dextran sulfate A (DSA, Mw 9-20 kDa) and dextran sulfate B (DSB, Mw 36-50 kDa) were selected as ion-pairing agents to prepare reversible HIP complex with octreotide. Complexation efficiency was optimized with respect to the mole ratio of ion-pairing agent to octreotide to achieve 100% complexation of octreotide. Dissociation studies suggested that DSA-octreotide and DSB-octreotide complexes dissociate completely at physiological pH in presence of counter ions unlike SDS-octreotide complex. DSA-octreotide and DSB-octreotide complex encapsulated PLGA microparticles (DSAMPs and DSBMPs) were prepared using the S/O/W emulsion method. Entrapment efficiencies for DSAMPs and DSBMPs were 74.7±8.4% and 81.7±6.3%, respectively. In vitro release of octreotide was performed by suspending MPs in gel. A large fraction of peptide was released in chemically intact form and <7% was acylated from DSAMPs and DSBMPs in gel over 55 days. Therefore, HIP complexation could be a viable strategy to minimize acylation of peptides and proteins during extended release from lactide and glycolide based polymers.
Expert Opinion on Drug Metabolism & Toxicology | 2012
Mitan R. Gokulgandhi; Aswani Dutt Vadlapudi; Ashim K. Mitra
Introduction: The eye is considered as the most privileged organ because of the blood–ocular barrier that acts as a barrier to systemically administered xenobiotics. However, there has been a significant increase in the number of reports on systemic drug-induced ocular complications. If such complications are left untreated, then it may cause permanent damage to vision. Hence, knowledge of most recent updates on ever-increasing reports of such toxicities has become imperative to develop better therapy while minimizing toxicities. Areas covered: The article is mainly divided into anterior and posterior segment manifestations caused by systemically administered drugs. The anterior segment is further elaborated on corneal complications where as the posterior segment is focused on optic nerve, retinal and vitreous complications. Furthermore, this article includes recent updates on acute and chronic ocular predicaments, in addition to discussing various associated symptoms caused by drugs. Expert opinion: Direct correlation of ocular toxicities due to systemic drug therapy is evident from current literature. Therefore, it is necessary to have detailed documentation of these complications to improve understanding and predict toxicities. We made an attempt to ensure that the reader is aware of the characteristic ocular complications, the potential for irreversible drug toxicity and indications for cessation.
Journal of Ocular Pharmacology and Therapeutics | 2011
Megha Barot; Mitan R. Gokulgandhi; Megan Haghnegahdar; Pranjali N. Dalvi; Ashim K. Mitra
PURPOSE Multidrug resistance (MDR) represents a major obstacle to the success of antimicrobial fluoroquinolone (FQ) therapy. MDR-associated efflux protein pumps antimicrobial agents out of the corneal cells, leading to suboptimal eradication of microbes. This article examines whether long-term FQ (levofloxacin, ofloxacin, and gatifloxacin) therapy can modify the MDR phenotype (P-glycoprotein [P-gp]) on corneal epithelial cells (Statens Seruminstitut Rabbit Cornea [SIRC]). METHODS To study the effect of FQ, SIRC cells without any exposure to FQ (control) were compared with the cells exposed to ofloxacin, levofloxacin, and gatifloxacin at a concentration of 10 μg/mL for 3 weeks. Efflux activity of P-gp was assessed by in vitro uptake studies (fluorescent and radioactive), flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS In the presence of FQ, elevated P-gp expression was noted with uptake, flow cytometry, and qRT-PCR analyses. This study confirms that long-term exposure to antibiotics, particularly FQ, can induce overexpression of P-gp efflux transporter present on the corneal cells. P-gp overexpression is commonly noticed in anticancer drug resistance cell lines; however, for the first time, this report describes overexpression of P-gp due to FQ exposure. CONCLUSIONS Based on this result, it is suggested that strategies should be developed and implemented not only to overcome resistance to ocular pathogen but also to FQ-induced cellular resistance.