Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitchell C. Tarczynski is active.

Publication


Featured researches published by Mitchell C. Tarczynski.


Science | 1993

Stress protection of transgenic tobacco by production of the osmolyte mannitol

Mitchell C. Tarczynski; Richard G. Jensen; Hans J. Bohnert

The accumulation of sugar alcohols and other low molecular weight metabolites such as proline and glycine-betaine is a widespread response that may protect against environmental stress that occurs in a diverse range of organisms. Transgenic tobacco plants that synthesize and accumulate the sugar alcohol mannitol were engineered by introduction of a bacterial gene that encodes mannitol 1 -phosphate dehydrogenase. Growth of plants from control and mannitol-containing lines in the absence and presence of added sodium chloride was analyzed. Plants containing mannitol had an increased ability to tolerate high salinity.


Nature Genetics | 2008

A phenylalanine in DGAT is a key determinant of oil content and composition in maize

Peizhong Zheng; William B. Allen; Keith Roesler; Mark E. Williams; Shirong Zhang; Jiming Li; Kimberly Glassman; Jerry Ranch; Douglas Nubel; William Edward Solawetz; Dinakar Bhattramakki; Victor Llaca; Stéphane Deschamps; Gan-Yuan Zhong; Mitchell C. Tarczynski; Bo Shen

Plant oil is an important renewable resource for biodiesel production and for dietary consumption by humans and livestock. Through genetic mapping of the oil trait in plants, studies have reported multiple quantitative trait loci (QTLs) with small effects, but the molecular basis of oil QTLs remains largely unknown. Here we show that a high-oil QTL (qHO6) affecting maize seed oil and oleic-acid contents encodes an acyl-CoA:diacylglycerol acyltransferase (DGAT1-2), which catalyzes the final step of oil synthesis. We further show that a phenylalanine insertion in DGAT1-2 at position 469 (F469) is responsible for the increased oil and oleic-acid contents. The DGAT1-2 allele with F469 is ancestral, whereas the allele without F469 is a more recent mutant selected by domestication or breeding. Ectopic expression of the high-oil DGAT1-2 allele increases oil and oleic-acid contents by up to 41% and 107%, respectively. This work provides insights into the molecular basis of natural variation of oil and oleic-acid contents in plants and highlights DGAT as a promising target for increasing oil and oleic-acid contents in other crops.


The Plant Cell | 1999

S-Methylmethionine Plays a Major Role in Phloem Sulfur Transport and Is Synthesized by a Novel Type of Methyltransferase

Fabienne Bourgis; Sanja Roje; Michael L. Nuccio; Donald B. Fisher; Mitchell C. Tarczynski; Changjiang Li; Cornelia Herschbach; Heinz Rennenberg; Maria Joao Pimenta; Tun-Li Shen; Douglas A. Gage; Andrew D. Hanson

All flowering plants produce S-methylmethionine (SMM) from Met and have a separate mechanism to convert SMM back to Met. The functions of SMM and the reasons for its interconversion with Met are not known. In this study, by using the aphid stylet collection method together with mass spectral and radiolabeling analyses, we established that l-SMM is a major constituent of the phloem sap moving to wheat ears. The SMM level in the phloem (∼2% of free amino acids) was 1.5-fold that of glutathione, indicating that SMM could contribute approximately half the sulfur needed for grain protein synthesis. Similarly, l-SMM was a prominently labeled product in phloem exudates obtained by EDTA treatment of detached leaves from plants of the Poaceae, Fabaceae, Asteraceae, Brassicaceae, and Cucurbitaceae that were given l–35S-Met. cDNA clones for the enzyme that catalyzes SMM synthesis (S-adenosylMet:Met S-methyltransferase; EC 2.1.1.12) were isolated from Wollastonia biflora, maize, and Arabidopsis. The deduced amino acid sequences revealed the expected methyltransferase domain (∼300 residues at the N terminus), plus an 800-residue C-terminal region sharing significant similarity with aminotransferases and other pyridoxal 5′-phosphate–dependent enzymes. These results indicate that SMM has a previously unrecognized but often major role in sulfur transport in flowering plants and that evolution of SMM synthesis in this group involved a gene fusion event. The resulting bipartite enzyme is unlike any other known methyltransferase.


Plant Physiology | 2010

Expression of ZmLEC1 and ZmWRI1 Increases Seed Oil Production in Maize

Bo Shen; William B. Allen; Peizhong Zheng; Changjiang Li; Kimberly Glassman; Jerry Ranch; Douglas Nubel; Mitchell C. Tarczynski

Increasing seed oil production is a major goal for global agriculture to meet the strong demand for oil consumption by humans and for biodiesel production. Previous studies to increase oil synthesis in plants have focused mainly on manipulation of oil pathway genes. As an alternative to single-enzyme approaches, transcription factors provide an attractive solution for altering complex traits, with the caveat that transcription factors may face the challenge of undesirable pleiotropic effects. Here, we report that overexpression of maize (Zea mays) LEAFY COTYLEDON1 (ZmLEC1) increases seed oil by as much as 48% but reduces seed germination and leaf growth in maize. To uncouple oil increase from the undesirable agronomic traits, we identified a LEC1 downstream transcription factor, maize WRINKLED1 (ZmWRI1). Overexpression of ZmWRI1 results in an oil increase similar to overexpression of ZmLEC1 without affecting germination, seedling growth, or grain yield. These results emphasize the importance of field testing for developing a commercial high-oil product and highlight ZmWRI1 as a promising target for increasing oil production in crops.


Proceedings of the National Academy of Sciences of the United States of America | 2003

sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein

Bo Shen; Changjiang Li; Zhao Min; Robert B. Meeley; Mitchell C. Tarczynski; Odd-Arne Olsen

A microscopy-based screen of a large collection of maize Mutator (Mu) transposon lines identified the supernumerary aleurone layers 1-1 (sal1-1) mutant line carrying up to seven layers of aleurone cells in defective kernel endosperm compared with only a single layer in wild-type grains. Normal, well filled endosperm that is homozygous for the sal1-1 mutant allele contains two to three layers of aleurone cells. Cloning of the sal1 gene was accomplished by using Mu tagging, and the identity of the cloned gene was confirmed by isolating an independent sal1-2 allele by reverse genetics. Homozygous sal1-2 endosperm has two to three layers of aleurone cells in normal, well filled grains. In situ hybridization experiments reveal that the sal1 gene is ubiquitously expressed in vegetative as well as zygotic grain tissues, with no difference being detected between aleurone cells and starchy endosperm cells. Northern blot analysis failed to detect the sal1-2 transcript in leaves of homozygous plants, suggesting that the allele is a true sal1 knockout allele. The sal1 gene encodes a homologue of the human Chmp1 gene, a member of the conserved family of the class E vacuolar protein sorting genes implicated in membrane vesicle trafficking. In mammals, CHMP1 functions in the pathway targeting plasma membrane receptors and ligands to lysosomes for proteolytic degradation. Possible roles for the function of the sal1 gene in aleurone signaling, including a defect in endosome trafficking, are discussed.


Plant Molecular Biology | 2006

The homeobox gene GLABRA2 affects seed oil content in Arabidopsis.

Bo Shen; Kerstin W. Sinkevicius; David A. Selinger; Mitchell C. Tarczynski

Despite a good understanding of genes involved in oil biosynthesis in seed, the mechanism(s) that controls oil accumulation is still not known. To identify genes that control oil accumulation in seed, we have developed a simple screening method to isolate Arabidopsis seed oil mutants. The method includes an initial screen for seed density followed by a seed oil screen using an automated Nuclear Magnetic Resonance (NMR). Using this method, we isolated ten low oil mutants and one high oil mutant. The high oil mutant, p777, accumulated 8% more oil in seed than did wild type, but it showed no differences in seed size, plant growth or development. The high-oil phenotype is caused by the disruption of the GLABRA2 gene, a previously identified gene that encodes a homeobox protein required for normal trichome and root hair development. Knockout of GLABRA2 did not affect LEAFY COTYLEDON 1 and PICKLE expression in developing embryo. The result indicates that in addition to its known function in trichome and root hair development, GLABRA2 is involved in the control of seed oil accumulation.


Plant Physiology | 2003

Insertional Inactivation of the Methionine S-Methyltransferase Gene Eliminates the S-Methylmethionine Cycle and Increases the Methylation Ratio

Michael G. Kocsis; Philippe Ranocha; Douglas A. Gage; Eric S. Simon; David Rhodes; Gregory J. Peel; Stefan Mellema; Kazuki Saito; Motoko Awazuhara; Changjiang Li; Robert B. Meeley; Mitchell C. Tarczynski; Conrad Wagner; Andrew D. Hanson

Methionine (Met) S-methyltransferase (MMT) catalyzes the synthesis of S-methyl-Met (SMM) from Met andS-adenosyl-Met (Ado-Met). SMM can be reconverted to Met by donating a methyl group to homocysteine (homo-Cys), and concurrent operation of this reaction and that mediated by MMT sets up the SMM cycle. SMM has been hypothesized to be essential as a methyl donor or as a transport form of sulfur, and the SMM cycle has been hypothesized to guard against depletion of the free Met pool by excess Ado-Met synthesis or to regulate Ado-Met level and hence the Ado-Met toS-adenosylhomo-Cys ratio (the methylation ratio). To test these hypotheses, we isolated insertional mmtmutants of Arabidopsis and maize (Zea mays). Both mutants lacked the capacity to produce SMM and thus had no SMM cycle. They nevertheless grew and reproduced normally, and the seeds of the Arabidopsis mutant had normal sulfur contents. These findings rule out an indispensable role for SMM as a methyl donor or in sulfur transport. The Arabidopsis mutant had significantly higher Ado-Met and lowerS-adenosylhomo-Cys levels than the wild type and consequently had a higher methylation ratio (13.8 versus 9.5). Free Met and thiol pools were unaltered in this mutant, although there were moderate decreases (of 30%–60%) in free serine, threonine, proline, and other amino acids. These data indicate that the SMM cycle contributes to regulation of Ado-Met levels rather than preventing depletion of free Met.


Plant Physiology | 1993

The Interactive Effects of pH, L-Malate, and Glucose-6-Phosphate on Guard-Cell Phosphoenolpyruvate Carboxylase

Mitchell C. Tarczynski; William H. Outlaw

The interactive effects of pH, L-malate, and glucose-6-phosphate (Glc-6-P) on the Vmax and Km of guard-cell (GC) phosphoenolpyruvate (PEP) carboxylase (PEPC) of Vicia faba L. were determined. Leaves of three different physiological states (closed stomata, opening stomata, open stomata) were rapidly frozen and freeze dried. GC pairs dissected from the leaves were individually extracted and individually assayed for the kinetic properties of PEPC. Vmax was 6 to 9 pmol GC pair-1 h-1 and was apparently unaffected to a biologically significant extent by the investigated physiological states of the leaf, pH (7.0 or 8.5), L-malate (0, 5, or 15 mM), and Glc-6-P (0, 0.1, 0.5, 0.7, or 5 mM). As reported earlier, the Km(PEP.Mg) was about 0.2 mM (pH 8.5) or 0.7 mM (pH 7.0), which can be compared with a GC [PEP] of 0.27 mM. In the study reported here, we determined that the in situ GC [Glc-6-P] equals approximately 0.6 to 1.2 mM. When 0.5 mM Glc-6-P was included in the GC PEPC assay mixture, the Km(PEP.Mg) decreased to about 0.1 mM (pH 8.5) or 0.2 mM (pH 7.0). Thus, Glc-6-P at endogenous concentrations would seem both to activate the enzyme and to diminish the dramatic effect of pH on Km(PEP.Mg). Under assay conditions, L-malate is an inhibitor of GC PEPC. In planta, cytoplasmic [L-malate] is approximately 8 mM. Inclusion of 5 mM L-malate increased the Km(PEP.Mg) to about 3.6 mM (pH 7.0) or 0.4 mM (pH 8.5). Glc-6-P (0.5 mM) was sufficient to relieve L-malate inhibition completely at pH 8.5. In contrast, approximately 5 mM Glc-6-P was required to relieve L-malate inhibition at pH 7.0. No biologically significant effect of physiological state of the tissue on GC PEPC Km(PEP.Mg) (regardless of the presence of effectors) was observed. Together, these results are consistent with a model that GC PEPC is regulated by its cytosolic chemical environment and not by posttranslational modification that is detectable at physiological levels of effectors. It is important to note, however, that we did not determine the phosphorylation status of GC PEPC directly or indirectly (by comparison of the concentration of L-malate that causes a 50% inhibition of GC PEPC).


Proceedings of the National Academy of Sciences of the United States of America | 1992

Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol.

Mitchell C. Tarczynski; Richard G. Jensen; Hans J. Bohnert


Plant Journal | 2002

High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-l-methionine synthetase 3 gene

Bo Shen; Changjiang Li; Mitchell C. Tarczynski

Collaboration


Dive into the Mitchell C. Tarczynski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knut Meyer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rebecca E. Cahoon

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge