Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca E. Cahoon is active.

Publication


Featured researches published by Rebecca E. Cahoon.


Proteomics | 2009

Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches

Sophie Alvarez; Bertram M. Berla; Jeanne Sheffield; Rebecca E. Cahoon; Joseph M. Jez; Leslie M. Hicks

Indian mustard (Brassica juncea L.) is known to both accumulate and tolerate high levels of heavy metals from polluted soils. To gain a comprehensive understanding of the effect of cadmium (Cd) treatment on B. juncea roots, two quantitative proteomics approaches – fluorescence two‐dimensional difference gel electrophoresis (2‐D DIGE) and multiplexed isobaric tagging technology (iTRAQ) – were implemented. Several proteins involved in sulfur assimilation, redox homeostasis, and xenobiotic detoxification were found to be up‐regulated. Multiple proteins involved in protein synthesis and processing were down‐regulated. While the two proteomics approaches identified different sets of proteins, the proteins identified in both datasets are involved in similar biological processes. We show that 2‐D DIGE and iTRAQ results are complementary, that the data obtained independently using the two techniques validate one another, and that the quality of iTRAQ results depends on both the number of biological replicates and the number of sample injections. This study determined the involvement of enzymes such as peptide methionine sulfoxide reductase and 2‐nitropropane dioxygenase in alternatives redox‐regulation mechanisms, as well as O‐acetylserine sulfhydrylase, glutathione‐S‐transferase and glutathione‐conjugate membrane transporter, as essential players in the Cd hyperaccumation and tolerance of B. juncea.


Journal of Biological Chemistry | 2005

Molecular Basis of Cysteine Biosynthesis in Plants STRUCTURAL AND FUNCTIONAL ANALYSIS OF O-ACETYLSERINE SULFHYDRYLASE FROM ARABIDOPSIS THALIANA

Eric R. Bonner; Rebecca E. Cahoon; Sarah M. Knapke; Joseph M. Jez

In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis, the pyridoxal 5′-phosphate (PLP)-dependent conversion of O-acetylserine into cysteine. Here we describe the 2.2 Å resolution crystal structure of OASS from Arabidopsis thaliana (AtOASS) and the 2.7 Å resolution structure of the AtOASS K46A mutant with PLP and methionine covalently linked as an external aldimine in the active site. Although the plant and bacterial OASS share a conserved set of amino acids for PLP binding, the structure of AtOASS reveals a difference from the bacterial enzyme in the positioning of an active site loop formed by residues 74-78 when methionine is bound. Site-directed mutagenesis, kinetic analysis, and ligand binding titrations probed the functional roles of active site residues. These experiments indicate that Asn77 and Gln147 are key amino acids for O-acetylserine binding and that Thr74 and Ser75 are involved in sulfur incorporation into cysteine. In addition, examination of the AtOASS structure and nearly 300 plant and bacterial OASS sequences suggest that the highly conserved β8A-β9A surface loop may be important for interaction with serine acetyltransferase, the other enzyme in cysteine biosynthesis. Initial protein-protein interaction experiments using AtOASS mutants targeted to this loop support this hypothesis.


The Plant Cell | 2007

Thiol-Based Regulation of Redox-Active Glutamate-Cysteine Ligase from Arabidopsis thaliana

Leslie M. Hicks; Rebecca E. Cahoon; Eric R. Bonner; Rebecca S. Rivard; Jeanne Sheffield; Joseph M. Jez

Glutathione biosynthesis is a key component in the network of plant stress responses that counteract oxidative damage and maintain intracellular redox environment. Using a combination of mass spectrometry and site-directed mutagenesis, we examined the response of Arabidopsis thaliana glutamate-cysteine ligase (GCL) to changes in redox environment. Mass spectrometry identified two disulfide bonds (Cys186-Cys406 and Cys349-Cys364) in GCL. Mutation of either Cys-349 or Cys-364 to a Ser reduced reaction rate by twofold, but substitution of a Ser for either Cys-186 or Cys-406 decreased activity by 20-fold and abrogated the response to changes in redox environment. Redox titrations show that the regulatory disulfide bond has a midpoint potential comparable with other known redox-responsive plant proteins. Mutation of Cys-102, Cys-251, Cys-349, or Cys-364 did not alter the response to redox environment, indicating that modulation of activity depends on the Cys186-Cys406 disulfide bond. In vivo analysis of GCL in Arabidopsis root extracts revealed that multiple oxidative stresses altered the distribution of oxidized (active) and reduced (inactive) enzyme and that this change correlated with increased GCL activity. The thiol-based regulation of GCL provides a posttranslational mechanism for modulating enzyme activity in response to in vivo redox environment and suggests a role for oxidative signaling in the maintenance of glutathione homeostasis in plants.


Journal of Biological Chemistry | 2004

Kinetic Mechanism of Glutathione Synthetase from Arabidopsis thaliana

Joseph M. Jez; Rebecca E. Cahoon

Glutathione synthetase (GS) catalyzes the ATP-dependent formation of the ubiquitous peptide glutathione from γ-glutamylcysteine and glycine. The bacterial and eukaryotic GS form two distinct families lacking amino acid sequence homology. Moreover, the detailed kinetic mechanism of the bacterial and the eukaryotic GS remains unclear. Here we have overexpressed Arabidopsis thaliana GS (AtGS) in an Escherichia coli expression system and purified the recombinant enzyme for biochemical characterization. AtGS is functional as a homodimeric protein with steady-state kinetic properties similar to those of other eukaryotic GS. The kinetic mechanism of AtGS was investigated using initial velocity methods and product inhibition studies. The best fit of the observed data was to the equation for a random Ter-reactant mechanism in which dependencies between the binding of some substrate pairs were preferred. The binding of either ATP or γ-glutamylcysteine increased the binding affinity of AtGS for the other substrate by 10-fold. Likewise, the binding of ATP or glycine increased binding affinity for the other ligand by 3.5-fold. In contrast, binding of either glycine or γ-glutamylcysteine causes a 6.7-fold decrease in binding affinity for the second molecule. Product inhibition studies suggest that ADP is the last product released from the enzyme. Overall, these observations are consistent with a random Ter-reactant mechanism for the eukaryotic GS in which the binding order of certain substrates is kinetically preferred for catalysis.


Plant Physiology | 2006

Mutagenic Definition of a Papain-Like Catalytic Triad, Sufficiency of the N-Terminal Domain for Single-Site Core Catalytic Enzyme Acylation, and C-Terminal Domain for Augmentative Metal Activation of a Eukaryotic Phytochelatin Synthase

Nataliya D. Romanyuk; Daniel J. Rigden; Olena K. Vatamaniuk; Albert Lang; Rebecca E. Cahoon; Joseph M. Jez; Philip A. Rea

Phytochelatin (PC) synthases are γ-glutamylcysteine (γ-Glu-Cys) dipeptidyl transpeptidases that catalyze the synthesis of heavy metal-binding PCs, (γ-Glu-Cys)nGly polymers, from glutathione (GSH) and/or shorter chain PCs. Here it is shown through investigations of the enzyme from Arabidopsis (Arabidopsis thaliana; AtPCS1) that, although the N-terminal half of the protein, alone, is sufficient for core catalysis through the formation of a single-site enzyme acyl intermediate, it is not sufficient for acylation at a second site and augmentative stimulation by free Cd2+. A purified N-terminally hexahistidinyl-tagged AtPCS1 truncate containing only the first 221 N-terminal amino acid residues of the enzyme (HIS-AtPCS1_221tr) is competent in the synthesis of PCs from GSH in media containing Cd2+ or the synthesis of S-methyl-PCs from S-methylglutathione in media devoid of heavy metal ions. However, whereas its full-length hexahistidinyl-tagged equivalent, HIS-AtPCS1, undergoes γ-Glu-Cys acylation at two sites during the Cd2+-dependent synthesis of PCs from GSH and is stimulated by free Cd2+ when synthesizing S-methyl-PCs from S-methylglutathione, HIS-AtPCS1_221tr undergoes γ-Glu-Cys acylation at only one site when GSH is the substrate and is not directly stimulated, but instead inhibited, by free Cd2+ when S-methylglutathione is the substrate. Through the application of sequence search algorithms capable of detecting distant homologies, work we reported briefly before but not in its entirety, it has been determined that the N-terminal half of AtPCS1 and its equivalents from other sources have the hallmarks of a papain-like, Clan CA Cys protease. Whereas the fold assignment deduced from these analyses, which substantiates and is substantiated by the recent determination of the crystal structure of a distant prokaryotic PC synthase homolog from the cyanobacterium Nostoc, is capable of explaining the strict requirement for a conserved Cys residue, Cys-56 in the case of AtPCS1, for formation of the biosynthetically competent γ-Glu-Cys enzyme acyl intermediate, the primary data from experiments directed at determining whether the other two residues, His-162 and Asp-180 of the putative papain-like catalytic triad of AtPCS1, are essential for catalysis have yet to be presented. This shortfall in our basic understanding of AtPCS1 is addressed here by the results of systematic site-directed mutagenesis studies that demonstrate that not only Cys-56 but also His-162 and Asp-180 are indeed required for net PC synthesis. It is therefore established experimentally that AtPCS1 and, by implication, other eukaryotic PC synthases are papain Cys protease superfamily members but ones, unlike their prokaryotic counterparts, which, in addition to having a papain-like N-terminal catalytic domain that undergoes primary γ-Glu-Cys acylation, contain an auxiliary metal-sensing C-terminal domain that undergoes secondary γ-Glu-Cys acylation.


Biochemical Journal | 2007

Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans

Katherine M. Brendza; William P. Haakenson; Rebecca E. Cahoon; Leslie M. Hicks; Lavanya H. Palavalli; Brandi Chiapelli; Merry B. Mclaird; James P. McCarter; D. Jeremy Williams; Michelle Coutu Hresko; Joseph M. Jez

The development of nematicides targeting parasitic nematodes of animals and plants requires the identification of biochemical targets not found in host organisms. Recent studies suggest that Caenorhabditis elegans synthesizes phosphocholine through the action of PEAMT (S-adenosyl-L-methionine:phosphoethanolamine N-methyltransferases) that convert phosphoethanolamine into phosphocholine. Here, we examine the function of a PEAMT from C. elegans (gene: pmt-1; protein: PMT-1). Our analysis shows that PMT-1 only catalyses the conversion of phosphoethanolamine into phospho-monomethylethanolamine, which is the first step in the PEAMT pathway. This is in contrast with the multifunctional PEAMT from plants and Plasmodium that perform multiple methylations in the pathway using a single enzyme. Initial velocity and product inhibition studies indicate that PMT-1 uses a random sequential kinetic mechanism and is feedback inhibited by phosphocholine. To examine the effect of abrogating PMT-1 activity in C. elegans, RNAi (RNA interference) experiments demonstrate that pmt-1 is required for worm growth and development and validate PMT-1 as a potential target for inhibition. Moreover, providing pathway metabolites downstream of PMT-1 reverses the RNAi phenotype of pmt-1. Because PMT-1 is not found in mammals, is only distantly related to the plant PEAMT and is conserved in multiple parasitic nematodes of humans, animals and crop plants, inhibitors targeting it may prove valuable in human and veterinary medicine and agriculture.


Phytochemistry | 2008

Contributions of conserved serine and tyrosine residues to catalysis, ligand binding, and cofactor processing in the active site of tyrosine ammonia lyase

Amy C. Schroeder; Sangaralingam Kumaran; Leslie M. Hicks; Rebecca E. Cahoon; Coralie Halls; Oliver Yu; Joseph M. Jez

Tyrosine ammonia lyase (TAL) catalyzes the conversion of L-tyrosine to p-coumaric acid using a 3,5-dihydro-5-methylidene-4H-imidazole-4-one (MIO) prosthetic group. In bacteria, TAL is used for production of the photoactive yellow protein chromophore and for caffeic acid biosynthesis in certain actinomycetes. Here we biochemically examine wild-type and mutant forms of TAL from Rhodobacter sphaeroides (RsTAL). Kinetic analysis of RsTAL shows that the enzyme displays a 90-fold preference for L-tyrosine versus L-phenylalanine as a substrate. The pH-dependence of TAL activity with L-tyrosine and L-phenylalanine demonstrates a common protonation state for catalysis, but indicates a difference in charge-state for binding of either amino acid. Site-directed mutagenesis demonstrates that Ser150, Tyr60, and Tyr300 are essential for catalysis. Mutation of Ser150 to an alanine abrogates formation of the MIO prosthetic group, as shown by mass spectrometry, and prevents catalysis. The Y60F and Y300F mutants were inactive with both amino acid substrates, but bound p-coumaric and cinnamic acids with less than 12-fold changes in affinity compared the wild-type enzyme. Analysis of MIO-dithiothreitol adduct formation shows that the reactivity of the prosthetic group is not significantly altered by mutation of either Tyr60 or Tyr300. The mechanistic roles of Ser150, Tyr60, and Tyr300 are discussed in relation to the three-dimensional structure of RsTAL and related MIO-containing enzymes.


Journal of Biological Chemistry | 2007

Reaction mechanism of glutathione synthetase from Arabidopsis thaliana: Site-directed mutagenesis of active site residues

Katherine Herrera; Rebecca E. Cahoon; Sangaralingam Kumaran; Joseph M. Jez

Glutathione is essential for maintaining the intracellular redox environment and is synthesized from γ-glutamylcysteine, glycine, and ATP by glutathione synthetase (GS). To examine the reaction mechanism of a eukaryotic GS, 24 Arabidopsis thaliana GS (AtGS) mutants were kinetically characterized. Within the γ-glutamylcysteine/glutathione-binding site, the S153A and S155A mutants displayed less than 4-fold changes in kinetic parameters with mutations of Glu-220 (E220A/E220Q), Gln-226 (Q226A/Q226N), and Arg-274 (R274A/R274K) at the distal end of the binding site resulting in 24-180-fold increases in the Km values for γ-glutamylcysteine. Substitution of multiple residues interacting with ATP (K313M, K367M, and E429A/E429Q) or coordinating magnesium ions to ATP (E148A/E148Q, N150A/N150D, and E371A) yielded inactive protein because of compromised nucleotide binding, as determined by fluorescence titration. Other mutations in the ATP-binding site (E371Q, N376A, and K456M) resulted in greater than 30-fold decreases in affinity for ATP and up to 80-fold reductions in turnover rate. Mutation of Arg-132 and Arg-454, which are positioned at the interface of the two substrate-binding sites, affected the enzymatic activity differently. The R132A mutant was inactive, and the R132K mutant decreased kcat by 200-fold; however, both mutants bound ATP with Kd values similar to wild-type enzyme. Minimal changes in kinetic parameters were observed with the R454K mutant, but the R454A mutant displayed a 160-fold decrease in kcat. In addition, the R132K, R454A, and R454K mutations elevated the Km value for glycine up to 11-fold. Comparison of the pH profiles and the solvent deuterium isotope effects of A. thaliana GS and the Arg-132 and Arg-454 mutants also suggest distinct mechanistic roles for these residues. Based on these results, a catalytic mechanism for the eukaryotic GS is proposed.


Journal of Biological Chemistry | 2008

A Single Amino Acid Change Is Responsible for Evolution of Acyltransferase Specificity in Bacterial Methionine Biosynthesis

Chloe Zubieta; Kiani A.J. Arkus; Rebecca E. Cahoon; Joseph M. Jez

Bacteria and yeast rely on either homoserine transsuccinylase (HTS, metA) or homoserine transacetylase (HTA; met2) for the biosynthesis of methionine. Although HTS and HTA catalyze similar chemical reactions, these proteins are typically unrelated in both sequence and three-dimensional structure. Here we present the 2.0 Å resolution x-ray crystal structure of the Bacillus cereus metA protein in complex with homoserine, which provides the first view of a ligand bound to either HTA or HTS. Surprisingly, functional analysis of the B. cereus metA protein shows that it does not use succinyl-CoA as a substrate. Instead, the protein catalyzes the transacetylation of homoserine using acetyl-CoA. Therefore, the B. cereus metA protein functions as an HTA despite greater than 50% sequence identity with bona fide HTS proteins. This result emphasizes the need for functional confirmation of annotations of enzyme function based on either sequence or structural comparisons. Kinetic analysis of site-directed mutants reveals that the B. cereus metA protein and the E. coli HTS share a common catalytic mechanism. Structural and functional examination of the B. cereus metA protein reveals that a single amino acid in the active site determines acetyl-CoA (Glu-111) versus succinyl-CoA (Gly-111) specificity in the metA-like of acyltransferases. Switching of this residue provides a mechanism for evolving substrate specificity in bacterial methionine biosynthesis. Within this enzyme family, HTS and HTA activity likely arises from divergent evolution in a common structural scaffold with conserved catalytic machinery and homoserine binding sites.


The Plant Cell | 2009

Structural Basis for Evolution of Product Diversity in Soybean Glutathione Biosynthesis

Ashley Galant; Kiani A.J. Arkus; Chloe Zubieta; Rebecca E. Cahoon; Joseph M. Jez

The redox active peptide glutathione is ubiquitous in nature, but some plants also synthesize glutathione analogs in response to environmental stresses. To understand the evolution of chemical diversity in the closely related enzymes homoglutathione synthetase (hGS) and glutathione synthetase (GS), we determined the structures of soybean (Glycine max) hGS in three states: apoenzyme, bound to γ-glutamylcysteine (γEC), and with hGSH, ADP, and a sulfate ion bound in the active site. Domain movements and rearrangement of active site loops change the structure from an open active site form (apoenzyme and γEC complex) to a closed active site form (hGSH•ADP•SO42− complex). The structure of hGS shows that two amino acid differences in an active site loop provide extra space to accommodate the longer β-Ala moiety of hGSH in comparison to the glycinyl group of glutathione. Mutation of either Leu-487 or Pro-488 to an Ala improves catalytic efficiency using Gly, but a double mutation (L487A/P488A) is required to convert the substrate preference of hGS from β-Ala to Gly. These structures, combined with site-directed mutagenesis, reveal the molecular changes that define the substrate preference of hGS, explain the product diversity within evolutionarily related GS-like enzymes, and reinforce the critical role of active site loops in the adaptation and diversification of enzyme function.

Collaboration


Dive into the Rebecca E. Cahoon's collaboration.

Top Co-Authors

Avatar

Joseph M. Jez

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Leslie M. Hicks

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kiani A.J. Arkus

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy C. Schroeder

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Jeanne Sheffield

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Katherine M. Brendza

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Lavanya H. Palavalli

Donald Danforth Plant Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge