Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitesh J. Borad is active.

Publication


Featured researches published by Mitesh J. Borad.


Journal of Clinical Oncology | 2011

Gemcitabine Plus nab-Paclitaxel Is an Active Regimen in Patients With Advanced Pancreatic Cancer: A Phase I/II Trial

Daniel D. Von Hoff; Ramesh K. Ramanathan; Mitesh J. Borad; Daniel A. Laheru; L. S. Smith; Tina E. Wood; Ronald L. Korn; Neil P. Desai; Vuong Trieu; Jose Iglesias; Hui Zhang; Patrick Soon-Shiong; Tao Shi; N. V. Rajeshkumar; Anirban Maitra; Manuel Hidalgo

PURPOSE The trial objectives were to identify the maximum-tolerated dose (MTD) of first-line gemcitabine plus nab-paclitaxel in metastatic pancreatic adenocarcinoma and to provide efficacy and safety data. Additional objectives were to evaluate positron emission tomography (PET) scan response, secreted protein acidic and rich in cysteine (SPARC), and CA19-9 levels in relation to efficacy. Subsequent preclinical studies investigated the changes involving the pancreatic stroma and drug uptake. PATIENTS AND METHODS Patients with previously untreated advanced pancreatic cancer were treated with 100, 125, or 150 mg/m(2) nab-paclitaxel followed by gemcitabine 1,000 mg/m(2) on days 1, 8, and 15 every 28 days. In the preclinical study, mice were implanted with human pancreatic cancers and treated with study agents. RESULTS A total of 20, 44, and three patients received nab-paclitaxel at 100, 125, and 150 mg/m(2), respectively. The MTD was 1,000 mg/m(2) of gemcitabine plus 125 mg/m(2) of nab-paclitaxel once a week for 3 weeks, every 28 days. Dose-limiting toxicities were sepsis and neutropenia. At the MTD, the response rate was 48%, with 12.2 median months of overall survival (OS) and 48% 1-year survival. Improved OS was observed in patients who had a complete metabolic response on [(18)F]fluorodeoxyglucose PET. Decreases in CA19-9 levels were correlated with increased response rate, progression-free survival, and OS. SPARC in the stroma, but not in the tumor, was correlated with improved survival. In mice with human pancreatic cancer xenografts, nab-paclitaxel alone and in combination with gemcitabine depleted the desmoplastic stroma. The intratumoral concentration of gemcitabine was increased by 2.8-fold in mice receiving nab-paclitaxel plus gemcitabine versus those receiving gemcitabine alone. CONCLUSION The regimen of nab-paclitaxel plus gemcitabine has tolerable adverse effects with substantial antitumor activity, warranting phase III evaluation.


Clinical Cancer Research | 2011

Phase I Trial of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients with Refractory, Locally Advanced or Metastatic Solid Tumors

Patricia LoRusso; Charles M. Rudin; Josina C. Reddy; Raoul Tibes; Glen J. Weiss; Mitesh J. Borad; Christine L. Hann; Julie R. Brahmer; Ilsung Chang; Walter C. Darbonne; Richard A. Graham; Kenn L. Zerivitz; Jennifer A. Low; Daniel D. Von Hoff

Purpose: The hedgehog (Hh) signaling pathway, a key regulator of cell growth and differentiation during development is implicated in pathogenesis of certain cancers. Vismodegib (GDC-0449) is a small-molecule inhibitor of smoothened, a key component of Hh signaling. This phase I trial assessed GDC-0449 treatment in patients with solid tumors refractory to current therapies or for which no standard therapy existed. Experimental Design: Sixty-eight patients received GDC-0449 at 150 mg/d (n = 41), 270 mg/d (n = 23), or 540 mg/d (n = 4). Adverse events, tumor responses, pharmacokinetics, and pharmacodynamic down-modulation of GLI1 expression in noninvolved skin were assessed. Results: Thirty-three of 68 patients had advanced basal cell carcinoma (BCC), 8 had pancreatic cancer, 1 had medulloblastoma; 17 other types of cancer were also represented. GDC-0449 was generally well-tolerated. Six patients (8.8%) experienced 7 grade 4 events (hyponatremia, fatigue, pyelonephritis, presyncope, resectable pancreatic adenocarcinoma, and paranoia with hyperglycemia), and 27.9% of patients experienced a grade 3 event [most commonly hyponatremia (10.3%), abdominal pain (7.4%), and fatigue (5.9%)]. No maximum tolerated dose was reached. The recommended phase II dose was 150 mg/d, based on achievement of maximal plasma concentration and pharmacodynamic response at this dose. Tumor responses were observed in 20 patients (19 with BCC and 1 unconfirmed response in medulloblastoma), 14 patients had stable disease as best response, and 28 had progressive disease. Evidence of GLI1 down-modulation was observed in noninvolved skin. Conclusions: GDC-0449 has an acceptable safety profile and encouraging anti-tumor activity in advanced BCC and medulloblastoma. Further study in these and other cancer types is warranted. Clin Cancer Res; 17(8); 2502–11. ©2011 AACR.


PLOS Genetics | 2014

Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.

Mitesh J. Borad; Mia D. Champion; Jan B. Egan; Winnie S. Liang; Rafael Fonseca; Alan H. Bryce; Ann E. McCullough; Michael T. Barrett; Katherine S. Hunt; Maitray D. Patel; Scott W. Young; Joseph M. Collins; Alvin C. Silva; Rachel M. Condjella; Matthew S. Block; Robert R. McWilliams; Konstantinos N. Lazaridis; Eric W. Klee; Keith C. Bible; Pamela Jo Harris; Gavin R. Oliver; Jaysheel D. Bhavsar; Asha Nair; Sumit Middha; Yan W. Asmann; Jean Pierre A Kocher; Kimberly A. Schahl; Benjamin R. Kipp; Emily G. Barr Fritcher; Angela Baker

Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.


International Journal of Radiation Oncology Biology Physics | 2012

Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer.

Jason M. Samuelian; Matthew D. Callister; Jonathan B. Ashman; Tonia M. Young-Fadok; Mitesh J. Borad; Leonard L. Gunderson

PURPOSE We have previously shown that intensity-modulated radiotherapy (IMRT) can reduce dose to small bowel, bladder, and bone marrow compared with three-field conventional radiotherapy (CRT) technique in the treatment of rectal cancer. The purpose of this study was to review our experience using IMRT to treat rectal cancer and report patient clinical outcomes. METHODS AND MATERIALS A retrospective review was conducted of patients with rectal cancer who were treated at Mayo Clinic Arizona with pelvic radiotherapy (RT). Data regarding patient and tumor characteristics, treatment, acute toxicity according to the Common Terminology Criteria for Adverse Events v 3.0, tumor response, and perioperative morbidity were collected. RESULTS From 2004 to August 2009, 92 consecutive patients were treated. Sixty-one (66%) patients were treated with CRT, and 31 (34%) patients were treated with IMRT. All but 2 patients received concurrent chemotherapy. There was no significant difference in median dose (50.4 Gy, CRT; 50 Gy, IMRT), preoperative vs. postoperative treatment, type of concurrent chemotherapy, or history of previous pelvic RT between the CRT and IMRT patient groups. Patients who received IMRT had significantly less gastrointestinal (GI) toxicity. Sixty-two percent of patients undergoing CRT experienced ≥Grade 2 acute GI side effects, compared with 32% among IMRT patients (p = 0.006). The reduction in overall GI toxicity was attributable to fewer symptoms from the lower GI tract. Among CRT patients, ≥Grade 2 diarrhea and enteritis was experienced among 48% and 30% of patients, respectively, compared with 23% (p = 0.02) and 10% (p = 0.015) among IMRT patients. There was no significant difference in hematologic or genitourinary acute toxicity between groups. In addition, pathologic complete response rates and postoperative morbidity between treatment groups did not differ significantly. CONCLUSIONS In the management of rectal cancer, IMRT is associated with a clinically significant reduction in lower GI toxicity compared with CRT. Further study is needed to evaluate differences in late toxicity and long-term efficacy.


Clinical Cancer Research | 2011

Phase 1 Study of the Safety, Tolerability, and Pharmacokinetics of TH-302, a Hypoxia-Activated Prodrug, in Patients with Advanced Solid Malignancies

Glen J. Weiss; Jeffrey R. Infante; E. Gabriela Chiorean; Mitesh J. Borad; Johanna C. Bendell; Julian R. Molina; Raoul Tibes; Ramesh K. Ramanathan; Karen Lewandowski; Suzanne F. Jones; Mario E. Lacouture; Virginia K. Langmuir; Hank Lee; Stew Kroll; Howard A. Burris

Purpose: The objectives of this phase 1, first-in-human study were to determine the dose-limiting toxicities (DLT), maximum tolerated dose (MTD), safety, pharmacokinetics, and preliminary activity of the hypoxia-activated prodrug TH-302 in patients with advanced solid tumors. Experimental Design: TH-302 was administered intravenously over 30 to 60 minutes in two regimens: three times weekly dosing followed by 1 week off (arm A) and every 3-week dosing (arm B). Results: Fifty-seven patients enrolled (arm A: N = 37 and arm B: N = 20). The TH-302 dose was escalated from 7.5 to 670 mg/m2 in arm A and from 670 to 940 mg/m2 in arm B. The most common adverse events were nausea, skin rash, fatigue, and vomiting. Hematologic toxicity was mild and limited. Grade 3 skin and mucosal toxicities were dose limiting at 670 mg/m2 in arm A; the MTD was 575 mg/m2. In arm B, grade 3 fatigue and grade 3 vaginitis/proctitis were dose limiting at 940 mg/m2; the MTD was 670 mg/m2. Plasma concentrations of TH-302 and the active metabolite Br-IPM (brominated version of isophosphoramide mustard) increased proportionally with dose. Two partial responses were noted in patients with metastatic small cell lung cancer (SCLC) and melanoma in arm A at 480 and 670 mg/m2. Stable disease was observed in arms A and B in 18 and 9 patients, respectively. Conclusions: The MTD of TH-302 was 575 mg/m2 weekly and 670 mg/m2 every 3 weeks. Skin and mucosal toxicities were DLTs. On the basis of responses in metastatic melanoma and SCLC, further investigations in these indications were initiated. Clin Cancer Res; 17(9); 2997–3004. ©2011 AACR.


Journal of Clinical Oncology | 2015

Randomized Phase II Trial of Gemcitabine Plus TH-302 Versus Gemcitabine in Patients With Advanced Pancreatic Cancer

Mitesh J. Borad; Shantan G. Reddy; Nathan Bahary; Hope E. Uronis; Darren Sigal; Allen Lee Cohn; William R. Schelman; Joe Stephenson; E. Gabriela Chiorean; Peter Rosen; Brian Ulrich; Tomislav Dragovich; Salvatore Del Prete; Mark U. Rarick; Clarence Eng; Stew Kroll; David P. Ryan

PURPOSE TH-302 is an investigational hypoxia-activated prodrug that releases the DNA alkylator bromo-isophosphoramide mustard in hypoxic settings. This phase II study (NCT01144455) evaluated gemcitabine plus TH-302 in patients with previously untreated, locally advanced or metastatic pancreatic cancer. PATIENTS AND METHODS Patients were randomly assigned 1:1:1 to gemcitabine (1,000 mg/m(2)), gemcitabine plus TH-302 240 mg/m(2) (G+T240), or gemcitabine plus TH-302 340 mg/m(2) (G+T340). Randomized crossover after progression on gemcitabine was allowed. The primary end point was progression-free survival (PFS). Secondary end points included overall survival (OS), tumor response, CA 19-9 response, and safety. RESULTS Two hundred fourteen patients (77% with metastatic disease) were enrolled between June 2010 and July 2011. PFS was significantly longer with gemcitabine plus TH-302 (pooled combination arms) compared with gemcitabine alone (median PFS, 5.6 v 3.6 months, respectively; hazard ratio, 0.61; 95% CI, 0.43 to 0.87; P = .005; median PFS for metastatic disease, 5.1 v 3.4 months, respectively). Median PFS times for G+T240 and G+T340 were 5.6 and 6.0 months, respectively. Tumor response was 12%, 17%, and 26% in the gemcitabine, G+T240, and G+T340 arms, respectively (G+T340 v gemcitabine, P = .04). CA 19-9 decrease was greater with G+T340 versus gemcitabine (-5,398 v -549 U/mL, respectively; P = .008). Median OS times for gemcitabine, G+T240, and G+T340 were 6.9, 8.7, and 9.2 months, respectively (P = not significant). The most common adverse events (AEs) were fatigue, nausea, and peripheral edema (frequencies similar across arms). Skin and mucosal toxicities (2% grade 3) and myelosuppression (55% grade 3 or 4) were the most common TH-302-related AEs but were not associated with treatment discontinuation. CONCLUSION PFS, tumor response, and CA 19-9 response were significantly improved with G+TH-302. G+T340 is being investigated further in the phase III MAESTRO study (NCT01746979).


Human Pathology | 2014

Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma

Rondell P. Graham; Emily G. Barr Fritcher; Ekaterina Pestova; John Schulz; Leonid A. Sitailo; George Vasmatzis; Stephen J. Murphy; Robert R. McWilliams; Steven N. Hart; Kevin C. Halling; Lewis R. Roberts; Gregory J. Gores; Fergus J. Couch; Lizhi Zhang; Mitesh J. Borad; Benjamin R. Kipp

Patients with cholangiocarcinoma often present with locally advanced or metastatic disease. There is a need for effective therapeutic strategies for advanced stage cholangiocarcinoma. Recently, FGFR2 translocations have been identified as a potential target for tyrosine kinase inhibitor therapies. This study evaluated 152 cholangiocarcinomas and 4 intraductal papillary biliary neoplasms of the bile duct for presence of FGFR2 translocations by fluorescence in situ hybridization and characterized the clinicopathologic features of cases with FGFR2 translocations. Thirteen (10 women, 3 men; 8%) of 156 biliary tumors harbored FGFR2 translocations, including 12 intrahepatic cholangiocarcinomas (12/96; 13%) and 1 intraductal papillary neoplasm of the bile duct. Histologically, cholangiocarcinomas with FGFR2 translocations displayed prominent intraductal growth (62%) or anastomosing tubular glands with desmoplasia (38%). Immunohistochemically, the tumors with FGFR2 translocations frequently showed weak and patchy expression of CK19 (77%). Markers of the stem cell phenotype in cholangiocarcinoma, HepPar1 and CK20, were negative in all cases. The median cancer-specific survival for patients whose tumors harbored FGFR2 translocations was 123 months compared to 37 months for cases without FGFR2 translocations (P = .039). This study also assessed 100 cholangiocarcinomas for ERBB2 amplification and ROS1 translocations. Of the cases tested, 3% and 1% were positive for ERBB2 amplification and ROS1 translocation, respectively. These results confirm that FGFR2, ERRB2, and ROS1 alterations are potential therapeutic targets for intrahepatic cholangiocarcinoma.


Hepatology | 2015

IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism.

Daisaku Yamada; Sumera Rizvi; Nataliya Razumilava; Steven F. Bronk; Jaime Davila; Mia D. Champion; Mitesh J. Borad; Jorge A. Bezerra; Xin Chen; Gregory J. Gores

Cholangiocarcinoma (CCA) is a lethal hepatobiliary neoplasm originating from the biliary apparatus. In humans, CCA risk factors include hepatobiliary inflammation and fibrosis. The recently identified interleukin (IL)−1 family member, IL‐33, has been shown to be a biliary mitogen which also promotes liver inflammation and fibrosis. Our aim was to generate a mouse model of CCA mimicking the human disease. Ectopic oncogene expression in the biliary tract was accomplished by the Sleeping Beauty transposon transfection system with transduction of constitutively active AKT (myr‐AKT) and Yes‐associated protein. Intrabiliary instillation of the transposon–transposase complex was coupled with lobar bile duct ligation in C57BL/6 mice, followed by administration of IL‐33 for 3 consecutive days. Tumors developed in 72% of the male mice receiving both oncogenes plus IL‐33 by 10 weeks but in only 20% of the male mice transduced with the oncogenes alone. Tumors expressed SOX9 and pancytokeratin (features of CCA) but were negative for HepPar1 (a marker of hepatocellular carcinoma). Substantive overlap with human CCA specimens was revealed by RNA profiling. Not only did IL‐33 induce IL‐6 expression by human cholangiocytes but it likely facilitated tumor development in vivo by an IL‐6–sensitive process as tumor development was significantly attenuated in Il‐6–/– male animals. Furthermore, tumor formation occurred at a similar rate when IL‐6 was substituted for IL‐33 in this model. Conclusion: The transposase‐mediated transduction of constitutively active AKT and Yes‐associated protein in the biliary epithelium coupled with lobar obstruction and IL‐33 administration results in the development of CCA with morphological and biochemical features of the human disease; this model highlights the role of inflammatory cytokines in CCA oncogenesis. (Hepatology 2015;61:1627–1642)


Cell Reports | 2017

Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

Farshad Farshidfar; Siyuan Zheng; Marie-Claude Gingras; Yulia Newton; Juliann Shih; A. Gordon Robertson; Toshinori Hinoue; Katherine A. Hoadley; Ewan A. Gibb; Jason Roszik; Kyle Covington; Chia Chin Wu; Eve Shinbrot; Nicolas Stransky; Apurva M. Hegde; Ju Dong Yang; Ed Reznik; Sara Sadeghi; Chandra Sekhar Pedamallu; Akinyemi I. Ojesina; Julian Hess; J. Todd Auman; Suhn Kyong Rhie; Reanne Bowlby; Mitesh J. Borad; Andrew X. Zhu; Josh Stuart; Chris Sander; Rehan Akbani; Andrew D. Cherniack

Summary Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.


Human Gene Therapy | 2010

Safety Studies on Intrahepatic or Intratumoral Injection of Oncolytic Vesicular Stomatitis Virus Expressing Interferon-β in Rodents and Nonhuman Primates

Nathan Jenks; Rae Myers; Suzanne Greiner; Jill Thompson; Emily K. Mader; Andrew Greenslade; Guy E. Griesmann; Mark J. Federspiel; Jorge Rakela; Mitesh J. Borad; Richard Vile; Glen N. Barber; Thomas R. Meier; Michael C. Blanco; Stephanie K. Carlson; Stephen J. Russell; Kah Whye Peng

Toxicology studies were performed in rats and rhesus macaques to establish a safe starting dose for intratumoral injection of an oncolytic vesicular stomatitis virus expressing human interferon-beta (VSV-hIFNbeta) in patients with hepatocellular carcinoma (HCC). No adverse events were observed after administration of 7.59 x 10(9) TCID(50) (50% tissue culture infective dose) of VSV-hIFNbeta into the left lateral hepatic lobe of Harlan Sprague Dawley rats. Plasma alanine aminotransferase and alkaline phosphatase levels increased and platelet counts decreased in the virus-treated animals on days 1 and 2 but returned to pretreatment levels by day 4. VSV-hIFNbeta was also injected into normal livers or an intrahepatic McA-RH7777 HCC xenograft established in Buffalo rats. Buffalo rats were more sensitive to neurotoxic effects of VSV; the no observable adverse event level (NOAEL) of VSV-hIFNbeta in Buffalo rats was 10(7) TCID(50). Higher doses were associated with fatal neurotoxicity and infectious virus was recovered from tumor and brain. Compared with VSV-hIFNbeta, toxicity of VSV-rIFNbeta (recombinant VSV expressing rat IFN-beta) was greatly diminished in Buffalo rats (NOAEL, >10(10) TCID(50)). Two groups of two adult male rhesus macaques received 10(9) or 10(10) TCID(50) of VSV-hIFNbeta injected directly into the left hepatic lobe under computed tomographic guidance. No neurological signs were observed at any time point. No abnormalities (hematology, clinical chemistry, body weights, behavior) were seen and all macaques developed neutralizing anti-VSV antibodies. Plasma interleukin-6, tumor necrosis factor-alpha, and hIFN-beta remained below detection levels by ELISA. On the basis of these studies, we will be proposing a cautious approach to dose escalation in a phase I clinical trial among patients with HCC.

Collaboration


Dive into the Mitesh J. Borad's collaboration.

Top Co-Authors

Avatar

Daniel D. Von Hoff

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raoul Tibes

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge