Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuhiro Itaya is active.

Publication


Featured researches published by Mitsuhiro Itaya.


Journal of Molecular Biology | 1991

Complete physical map of the Bacillus subtilis 168 chromosome constructed by a gene-directed mutagenesis method

Mitsuhiro Itaya; Teruo Tanaka

All the SfiI sites and most of the NotI sites were located precisely on the chromosome of Bacillus subtilis 168 by a novel method, termed gene-directed mutagenesis. The stepwise elimination of these restriction sites by this method allowed not only the physical connection of the restriction fragments but also the accurate determination of the position of the restriction sites themselves. The resulting physical map of the 4165 x 10(3) base-pair B. subtilis chromosome has been correlated with the genetic map by determination of the exact location of known genes. The complete physical map provides a rapid and accurate way for mapping of new genes as well as analysis of large DNA rearrangements on the chromosome. The novel strategy is, in principle, applicable to the analysis of the genome of other organisms.


Nature Methods | 2008

Bottom-up genome assembly using the Bacillus subtilis genome vector

Mitsuhiro Itaya; Kyoko Fujita; Azusa Kuroki; Kenji Tsuge

We established a protocol to construct complete recombinant genomes from their small contiguous DNA pieces and obtained the genomes of mouse mitochondrion and rice chloroplast using a B. subtilis genome (BGM) vector. This method allows the design of any recombinant genomes, valuable not only for fundamental research in systems biology and synthetic biology but also for various applications in the life sciences.


FEBS Letters | 1995

An estimation of minimal genome size required for life

Mitsuhiro Itaya

The number of indispensable chromosomal loci for a bacterium, Bacillus subtilis was estimated. Seventy‐nine randomly selected chromosomal loci were investigated by mutagenesis. Mutation at only six loci rendered B. subtilis unable to form colonies. In contrast, mutants for the rest of the 73 loci retained the ability to form colonies. Mutant B. subtilis with multiple‐fold mutations of those dispensable loci (7‐, 12‐ or 33‐fold) were not impaired in their ability to form colonies on nutritionally adequate medium, indicating that up to 33 dispensable loci were simultaneously abolished. Given the statistical analyses for the frequency of indispensable loci (6 out of 79), total indispensable genetic material would be included within about 562 kbp. The hypothetical minimum genome size lies in the range of those currently determined smallest genomes for bacteria.


Applied and Environmental Microbiology | 2007

Metabolic Engineering of Carotenoid Biosynthesis in Escherichia coli by Ordered Gene Assembly in Bacillus subtilis

Tomoko Nishizaki; Kenji Tsuge; Mitsuhiro Itaya; Nobuhide Doi; Hiroshi Yanagawa

ABSTRACT We attempted to optimize the production of zeaxanthin in Escherichia coli by reordering five biosynthetic genes in the natural carotenoid cluster of Pantoea ananatis. Newly designed operons for zeaxanthin production were constructed by the ordered gene assembly in Bacillus subtilis (OGAB) method, which can assemble multiple genes in one step using an intrinsic B. subtilis plasmid transformation system. The highest level of production of zeaxanthin in E. coli (820 μg/g [dry weight]) was observed in the transformant with a plasmid in which the gene order corresponds to the order of the zeaxanthin metabolic pathway (crtE-crtB-crtI-crtY-crtZ), among a series of plasmids with circularly permuted gene orders. Although two of five operons using intrinsic zeaxanthin promoters failed to assemble in B. subtilis, the full set of operons was obtained by repressing operon expression during OGAB assembly with a pR promoter-cI repressor system. This result suggests that repressing the expression of foreign genes in B. subtilis is important for their assembly by the OGAB method. For all tested operons, the abundance of mRNA decreased monotonically with the increasing distance of the gene from the promoter in E. coli, and this may influence the yield of zeaxanthin. Our results suggest that rearrangement of biosynthetic genes in the order of the metabolic pathway by the OGAB method could be a useful approach for metabolic engineering.


Applied and Environmental Microbiology | 2012

Rearrangement of Gene Order in the phaCAB Operon Leads to Effective Production of Ultrahigh-Molecular-Weight Poly[(R)-3-Hydroxybutyrate] in Genetically Engineered Escherichia coli

Ayaka Hiroe; Kenji Tsuge; Christopher T. Nomura; Mitsuhiro Itaya; Takeharu Tsuge

ABSTRACT Ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] [UHMW-P(3HB)] synthesized by genetically engineered Escherichia coli is an environmentally friendly bioplastic material which can be processed into strong films or fibers. An operon of three genes (organized as phaCAB) encodes the essential proteins for the production of P(3HB) in the native producer, Ralstonia eutropha. The three genes of the phaCAB operon are phaC, which encodes the polyhydroxyalkanoate (PHA) synthase, phaA, which encodes a 3-ketothiolase, and phaB, which encodes an acetoacetyl coenzyme A (acetoacetyl-CoA) reductase. In this study, the effect of gene order of the phaCAB operon (phaABC, phaACB, phaBAC, phaBCA, phaCAB, and phaCBA) on an expression plasmid in genetically engineered E. coli was examined in order to determine the best organization to produce UHMW-P(3HB). The results showed that P(3HB) molecular weights and accumulation levels were both dependent on the order of the pha genes relative to the promoter. The most balanced production result was achieved in the strain harboring the phaBCA expression plasmid. In addition, analysis of expression levels and activity for P(3HB) biosynthesis enzymes and of P(3HB) molecular weight revealed that the concentration of active PHA synthase had a negative correlation with P(3HB) molecular weight and a positive correlation with cellular P(3HB) content. This result suggests that the level of P(3HB) synthase activity is a limiting factor for producing UHMW-P(3HB) and has a significant impact on P(3HB) production.


Journal of Bacteriology | 2010

An Extreme Thermophile, Thermus thermophilus, Is a Polyploid Bacterium

Naoto Ohtani; Masaru Tomita; Mitsuhiro Itaya

An extremely thermophilic bacterium, Thermus thermophilus HB8, is one of the model organisms for systems biology. Its genome consists of a chromosome (1.85 Mb), a megaplasmid (0.26 Mb) designated pTT27, and a plasmid (9.3 kb) designated pTT8, and the complete sequence is available. We show here that T. thermophilus is a polyploid organism, harboring multiple genomic copies in a cell. In the case of the HB8 strain, the copy number of the chromosome was estimated to be four or five, and the copy number of the pTT27 megaplasmid seemed to be equal to that of the chromosome. It has never been discussed whether T. thermophilus is haploid or polyploid. However, the finding that it is polyploid is not surprising, as Deinococcus radiodurans, an extremely radioresistant bacterium closely related to Thermus, is well known to be a polyploid organism. As is the case for D. radiodurans in the radiation environment, the polyploidy of T. thermophilus might allow for genomic DNA protection, maintenance, and repair at elevated growth temperatures. Polyploidy often complicates the recognition of an essential gene in T. thermophilus as a model organism for systems biology.


Antimicrobial Agents and Chemotherapy | 2005

Horizontal Transfer of Iturin A Operon, itu, to Bacillus subtilis 168 and Conversion into an Iturin A Producer

Kenji Tsuge; Satoka Inoue; Takashi Ano; Mitsuhiro Itaya; Makoto Shoda

ABSTRACT Iturin A and its derivatives are lipopeptide antibiotics produced by Bacillus subtilis and several closely related bacteria. Three iturin group operons (i.e., iturin A, mycosubtilin, and bacillomycin D) of those antibiotic-producing strains have been cloned and sequenced thus far, strongly implying the horizontal transfer of these operons. To examine the nature of such horizontal transfer in terms of antibiotic production, a 42-kb region of the B. subtilis RB14 genome, which contains a complete 38-kb iturin A operon, was transferred via competent cell transformation to the genome of a non-iturin A producer, B. subtilis 168, using a method based on double-crossover homologous recombination with two short landing pad sequences (LPSs) in the genome. The recombinant was positively selected by confirming the elimination of the cI repressor gene, which was localized between the two LPSs and substituted by the transferred segment. The iturin A operon-transferred strain 168 was then converted into an iturin A producer by the introduction of an sfp gene, which encodes 4′-phosphopantetheinyl transferase and is mutated in strain 168. By inserting the pleiotropic regulator degQ, the productivity of iturin A increased sevenfold and was restored to about half that of the donor strain RB14, without the transfer of additional genes, such as regulatory or self-resistance genes.


Molecular Microbiology | 2003

Multiplication of a restriction-modification gene complex.

Marat Sadykov; Yasuo Asami; Hironori Niki; Naofumi Handa; Mitsuhiro Itaya; Masaru Tanokura; Ichizo Kobayashi

Previous works have suggested that some gene complexes encoding a restriction (R) enzyme and a cognate modification (M) enzyme may behave as selfish mobile genetic elements. RM gene complexes, which destroy ‘non‐self’ elements marked by the absence of proper methylation, are often associated with mobile genetic elements and are involved in various genome rearrangements. Here, we found amplification of a restriction–modification gene complex. BamHI gene complex inserted into the Bacillus chromosome showed resistance to replacement by a homologous stretch of DNA. Some cells became transformed with the donor without losing BamHI. In most of these transformants, multiple copies of BamHI and the donor allele were arranged as tandem repeats. When a clone carrying one copy of each allele was propagated, extensive amplification of BamHI and the donor unit was observed in a manner dependent on restriction enzyme gene. This suggests that restriction cutting of the genome participates in the amplification. Visualization by fluorescent in situ hybridization revealed that the amplification occurred in single cells in a burst‐like fashion that is reminiscent of induction of provirus replication. The multiplication ability in a bacterium with natural capacity for DNA release, uptake and transformation will be discussed in relation to spreading of RM gene complexes.


Microbiology | 1995

I-CeuI recognition sites in the rrn operons of the Bacillus subtilis 168 chromosome: inherent landmarks for genome analysis.

Tsutomu Toda; Mitsuhiro Itaya

The Bacillus subtilis 168 circular chromosome yielded ten fragments on I-CeuI endonuclease digestion. I-CeuI recognizes a 26 bp sequence that is located within the gene encoding the 23S subunit of the rRNA in Chlamydomonas eugametos, Escherichia coli and Salmonella typhimurium. The precise locations of the I-CeuI sites of the B. subtilis chromosome were determined on a NotI-SfiI physical map by (i) double digestion analyses with I-CeuI and SfiI, (ii) comparison of mutant strains lacking a specific rrn operon, (iii) using an I-CeuI linking clone and (iv) analysis of nucleotide sequence data of some rrn operons. In conclusion, all the I-CeuI sites were located within the B. subtilis rrn operons and the I-CeuI sites were conserved in all the B. subtilis 168 derivatives tested. Thus, variations in size of the I-CeuI fragments must be due to genome alterations. A B. subtilis 168 strain was investigated with I-CeuI. We demonstrated that the aberrant structure was the outcome of the inversion of an approximately 1700 kb DNA segment.


Molecular Genetics and Genomics | 1993

Integration of repeated sequences (pBR322) in the Bacillus subtilis 168 chromosome without affecting the genome structure

Mitsuhiro Itaya

The Escherichia coli plasmid pBR322 sequence (4363 bp) was integrated at the met, pro, or leuB locus of the Bacillus subtilis chromosome without duplication of the flanking chromosomal regions. The integrated pBR322 was stably maintained as part of the chromosome regardless of its orientation or location. It was found that a DNA segment as large as 17 kb cloned in pBR322 can be readily transferred to the B. subtilis chromosome by transformation. It was demonstrated that a second pBR322 sequence could be effectively introduced at different regions of the chromosome by sequential transformation using chromosomal DNA isolated from a strain that had already acquired a pBR322 sequence at a different locus. Similarly, a third pBR322 sequence could be introduced. By this method, two or three pBR322 sequences can be incorporated at unlinked loci without affecting the overall structure of the B. subtilis genome.

Collaboration


Dive into the Mitsuhiro Itaya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinya Kaneko

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge