Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuru Akita is active.

Publication


Featured researches published by Mitsuru Akita.


Biochimica et Biophysica Acta | 2001

Molecular chaperones involved in chloroplast protein import

Diane Jackson-Constan; Mitsuru Akita; Kenneth Keegstra

Transport of cytoplasmically synthesized precursor proteins into chloroplasts, like the protein transport systems of mitochondria and the endoplasmic reticulum, appears to require the action of molecular chaperones. These molecules are likely to be the sites of the ATP hydrolysis required for precursor proteins to bind to and be translocated across the two membranes of the chloroplast envelope. Over the past decade, several different chaperones have been identified, based mainly on their association with precursor proteins and/or components of the chloroplast import complex, as putative factors mediating chloroplast protein import. These factors include cytoplasmic, chloroplast envelope-associated and stromal members of the Hsp70 family of chaperones, as well as stromal Hsp100 and Hsp60 chaperones and a cytoplasmic 14-3-3 protein. While many of the findings regarding the action of chaperones during chloroplast protein import parallel those seen for mitochondrial and endoplasmic reticulum protein transport, the chloroplast import system also has unique aspects, including its hypothesized use of an Hsp100 chaperone to drive translocation into the organelle interior. Many questions concerning the specific functions of chaperones during protein import into chloroplasts still remain that future studies, both biochemical and genetic, will need to address.


Journal of Cell Biology | 2006

Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts

Ming-Lun Chou; Chiung-Chih Chu; Lih-Jen Chen; Mitsuru Akita; Hsou-min Li

Three components of the chloroplast protein translocon, Tic110, Hsp93 (ClpC), and Tic40, have been shown to be important for protein translocation across the inner envelope membrane into the stroma. We show the molecular interactions among these three components that facilitate processing and translocation of precursor proteins. Transit-peptide binding by Tic110 recruits Tic40 binding to Tic110, which in turn causes the release of transit peptides from Tic110, freeing the transit peptides for processing. The Tic40 C-terminal domain, which is homologous to the C terminus of cochaperones Sti1p/Hop and Hip but with no known function, stimulates adenosine triphosphate hydrolysis by Hsp93. Hsp93 dissociates from Tic40 in the presence of adenosine diphosphate, suggesting that Tic40 functions as an adenosine triphosphatase activation protein for Hsp93. Our data suggest that chloroplasts have evolved the Tic40 cochaperone to increase the efficiency of precursor processing and translocation.


Journal of Biological Chemistry | 2008

Three Sets of Translocation Intermediates Are Formed during the Early Stage of Protein Import into Chloroplasts

Hitoshi Inoue; Mitsuru Akita

During the early stage of protein import into chloroplasts, precursor proteins synthesized in the cytosol irreversibly bind to chloroplasts to form the early translocation intermediate under stringent energy conditions. Many efforts have been made to identify the components involved in protein import by analyzing the early intermediate. However, the state of the precursor within the intermediate has not been well investigated so far. In this study, an attempt was made to evaluate the extent of translocation of the precursor by determining the state of the precursor in the early intermediate under various conditions and analyzing the fragments generated by limited proteolysis of the precursors docked to chloroplasts. Our results indicate that three different sets of early intermediate are formed based on temperature and the hydrolysis of GTP/ATP. These have been identified based on the size of proteolytic fragments of the precursor as “energy-dependent association,” “insertion,” and “penetration” states. These findings suggest two individual ATP-hydrolyzing steps during the early stage of protein import, one of which is temperature-sensitive. Our results also demonstrate that translocation through the outer envelope membrane is mainly dependent on internal ATP.


Bioscience, Biotechnology, and Biochemistry | 2008

Alternative Processing of Arabidopsis Hsp70 Precursors during Protein Import into Chloroplasts

R.M. Udayangani Ratnayake; Hitoshi Inoue; Hiroshi Nonami; Mitsuru Akita

During protein import into chloroplasts, one of the Hsp70 proteins in pea (Hsp70-IAP), previously reported to localize in the intermembrane space of chloroplasts, was found to interact with the translocating precursor protein but the gene for Hsp70-IAP has not been identified yet. In an attempt to identify the Arabidopsis homolog of Hsp70-IAP, we employed an in vitro protein import assay to determine the localization of three Arabidopsis Hsp70 homologs (AtHsp70-6 through 8), predicted for chloroplast targeting. AtHsp70-6 and AtHsp70-7 were imported into chloroplasts and processed into similar-sized mature forms. In addition, a smaller-sized processed form of AtHsp70-6 was observed. All the processed forms of both AtHsp70 proteins were localized in the stroma. Organelle-free processing assays revealed that the larger processed forms of both AtHsp70-6 and AtHsp70-7 were cleaved by stromal processing peptidase, whereas the smaller processed form of AtHsp70-6 was produced by an unspecified peptidase.


Planta | 2005

Identification of three shikimate kinase genes in rice: characterization of their differential expression during panicle development and of the enzymatic activities of the encoded proteins

Koji Kasai; Takuya Kanno; Mitsuru Akita; Yasuko Ikejiri-Kanno; Kyo Wakasa; Yuzuru Tozawa

The shikimate pathway is common to the biosynthesis of the three aromatic amino acids and that of various secondary metabolites in land plants. Shikimate kinase (SK; EC 2.7.1.71) catalyzes the phosphorylation of shikimate to yield shikimate 3-phosphate. In an attempt to elucidate the functional roles of enzymes that participate in the shikimate pathway in rice (Oryza sativa), we have now identified and characterized cDNAs corresponding to three SK genes—OsSK1, OsSK2, and OsSK3—in this monocotyledenous plant. These SK cDNAs encode proteins with different NH2-terminal regions and with putative mature regions that share sequence similarity with other plant and microbial SK proteins. An in vitro assay of protein import into intact chloroplasts isolated from pea (Pisum sativum) seedlings revealed that the full-length forms of the three rice SK proteins are translocated into chloroplasts and processed, consistent with the assumption that the different NH2-terminal sequences function as chloroplast transit peptides. The processed forms of all three rice proteins synthesized in vitro manifested SK catalytic activity. Northern blot analysis revealed that the expression of OsSK1 and OsSK2 was induced in rice calli by treatment with the elicitor N-acetylchitoheptaose, and that expression of OsSK1 and OsSK3 was up-regulated specifically during the heading stage of panicle development. These results suggest that differential expression of the three rice SK genes and the accompanying changes in the production of shikimate 3-phosphate may contribute to the defense response and to panicle development in rice.


Plant Molecular Biology | 2012

ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro.

Yuhta Nomura; Taito Takabayashi; Hiroshi Kuroda; Yasushi Yukawa; Kwanchanok Sattasuk; Mitsuru Akita; Akira Nozawa; Yuzuru Tozawa

Chloroplasts possess common biosynthetic pathways for generating guanosine 3′,5′-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5′-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.


Methods in Enzymology | 2009

EVALUATING THE ENERGY-DEPENDENT BINDING IN THE EARLY STAGE OF PROTEIN IMPORT INTO CHLOROPLASTS

Mitsuru Akita; Hitoshi Inoue

During protein import into chloroplasts, precursor proteins are synthesized in the cytosol with an amino-terminal extension signal and irreversibly bind to chloroplasts under stringent energy conditions, such as low levels of GTP/ATP and low temperature, to form the early translocation intermediates. Whether the states of the early-intermediates that are formed under different energy conditions are similar has not been well studied. To evaluate the early intermediate states, we analyzed how precursor proteins within the early intermediates behave by employing two different approaches, limited proteolysis and site-specific cross-linking. Our results indicate that three different combinations of three different early intermediate stages are present and that the extent of precursor translocation differs between these stages based upon temperature as well as hydrolysis of GTP and ATP. Furthermore, the transition from the second to the third stage was only observed by increasing the temperature. This transition is also accompanied by the hydrolysis of ATP and the movement of the transit peptide. These results suggest the presence of temperature-sensitive and temperature-insensitive ATP-hydrolyzing steps during the early stages of protein import.


Plant Production Science | 2007

Kunitz soybean trypsin inhibitor is modified at its C-terminus by novel soybean thiol protease (protease T1).

Makoto Sugawara; Daisuke Ito; Kosuke Yamamoto; Mitsuru Akita; Suguru Oguri; Yoshie S. Momonoki

Abstract Kunitz soybean trypsin inhibitor (KSTI) is hydrolyzed during seed germination to yield amino acids needed to support initial seedling growth. The type of KSTI from Glycine max (L.) Merrill cv. Toyokomachi is KSTI-Ti b. The KSTI-Ti b from 4-day-old post-germination cotyledons (KSTI-Ti b’) has 3 or 4 amino acid residues cleaved off at the C-terminus. This KSTI modification is important to understand the mechanism of degradation in seed reserve proteins by proteases. Protease K1 also cleaves amino acid residues at the C-terminus of KSTI but it removes 5 amino acid residues. Therefore, we presumed the KSTI-Ti b’ was produced by a protease other than protease K1. In this study, the protease T1 responsible for cleavage of KSTI-Ti b at the C-terminus was purified. The enzyme was estimated to have a molecular mass of 33 kDa from its mobility on SDS-PAGE gels. The N-terminal amino acid sequence of the purified protease T1 corresponded to amino acids Phe-73 to Phe-92 of both thiol protease isoforms A and B from the soybean leaf, and shared 83% identity with the partial amino acid sequence of the membrane-associated cysteine protease from mung bean seedlings, a protease known to perform post-translational cleavage of C-terminal peptides of target proteins. Finally, this enzyme was shown to convert KSTI-Ti b to KSTI-Ti b’.


Bioscience, Biotechnology, and Biochemistry | 2011

In Vitro Protein Import of a Putative Amino Acid Transporter from Arabidopsis thaliana into Chloroplasts and Its Suborganellar Localization

Kwanchanok Sattasuk; Akira Nozawa; Yuzuru Tozawa; Yoshimi Kakinuma; Mitsuru Akita

We identified a gene product of At5g19500 (At5g19500p) from Arabidopsis thaliana that is homologous to EcTyrP, a tyrosine-specific transporter from Escherichia coli. Computational analyses of the amino acid sequence of At5g19500p predicted 11 transmembrane domains (TMDs) and a potential plastid targeting signal at its amino terminus. As a first step toward understanding the possible role of At5g19500p in plant cells, we attempted to determine the localization of At5g19500p by an in vitro chloroplastic import assay using At5g19500p translated in a cell-free wheat germ system (Madin et al., Proc. Natl. Acad. Sci. USA, 97, 559–564 (2000)), followed by subfractionation of the chloroplasts. At5g19500p was successfully imported into chloroplasts, and the newly transported mature form of At5g19500p was recovered from the inner envelope membrane.


Archives of Biochemistry and Biophysics | 2008

The transition of early translocation intermediates in chloroplasts is accompanied by the movement of the targeting signal on the precursor protein.

Hitoshi Inoue; Mitsuru Akita

During protein import into chloroplasts, precursor proteins are docked to these organelles under stringent energy conditions to form early translocation intermediates. Depending on the temperature and the requirement for ATP, different types of early-intermediates are present, for which the extent of precursor protein translocation differs [H. Inoue, M. Akita, J. Biol. Chem. 283 (2008) 7491-7502]. However, it has not been determined whether the environment surrounding the precursor differs for each intermediate. We therefore employed a site-specific photo-crosslinking strategy in our current study to capture any components in close proximity to the targeting signal of the precursors within the early-intermediates. Various crosslinked products, one of which contains Toc75, were identified. The appearance of these products was found to be dependent on the position of the precursor upon modification by the crosslinker and also the intermediate state. This indicated that the transition of early translocation intermediates is accompanied with the movement of the targeting signal within the early-intermediates.

Collaboration


Dive into the Mitsuru Akita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Wada

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Ito

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge