Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuyoshi Ueda is active.

Publication


Featured researches published by Mitsuyoshi Ueda.


Applied Microbiology and Biotechnology | 2006

Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion

Kouichi Kuroda; Mitsuyoshi Ueda

To increase the level of adsorption of heavy metal ions in surface-engineered yeasts, a yeast metallothionein (YMT) was tandemly fused and displayed by means of an α-agglutinin-based display system. The display of the YMT and its tandem repeats was examined by immunofluorescent labeling. The adsorption and recovery of Cd2+ on the cell surface was increasingly enhanced with increasing number of tandem repeats. All Cd2+-binding sites in the YMT tandem repeats were suggested to be completely occupied. To investigate the relationship between cell-surface adsorption and protection against heavy metal ion toxicity, the tolerance of these surface-engineered yeasts to Cd2+ was examined by growing in Cd2+-containing liquid medium. The rate of growth was found to be dependent on the number of displayed tandem repeats of YMT. These results suggest that the characteristics of surface-engineered yeasts as a bioadsorbent were dependent on the ability of the displayed proteins to bind metal ions, and the adsorption of heavy metal ions on the cell surface plays a major role in the ability of the cells to resist the toxic effects of metal ions.


Biotechnology Letters | 2011

Cell surface engineering of yeast for applications in white biotechnology.

Kouichi Kuroda; Mitsuyoshi Ueda

Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.


Applied Microbiology and Biotechnology | 2009

Enhancement of display efficiency in yeast display system by vector engineering and gene disruption

Kouichi Kuroda; Ken Matsui; Shinsuke Higuchi; Atsushi Kotaka; Hiroshi Sahara; Yoji Hata; Mitsuyoshi Ueda

Vector engineering and gene disruption in host cells were attempted for the enhancement of α-agglutinin-based display of proteins on the cell surface in yeast. To evaluate the display efficiency by flow cytometric analysis, DsRed-monomer fused with FLAG-tag was displayed and immunostained as a model protein. The use of leu2-d in the expression vector resulted in the enhanced efficiency and ratio of the accessible display of proteins. Moreover, the amount of displayed proteins in SED1-disrupted cells increased particularly during the stationary growth phase. The combination of these improvements resulted in the quantitatively enhanced accessible display of DsRed-monomer on the yeast cell surface. The improved yeast display system would be useful in a wider range of its applications in biotechnology.


Applied Microbiology and Biotechnology | 2006

Systems for the detection and analysis of protein–protein interactions

Kouichi Kuroda; Michiko Kato; Mitsuyoshi Ueda

The analysis of protein–protein interactions is important for developing a better understanding of the functional annotations of proteins that are involved in various biochemical reactions in vivo. The discovery that a protein with an unknown function binds to a protein with a known function could provide a significant clue to the cellular pathway concerning the unknown protein. Therefore, information on protein–protein interactions obtained by the comprehensive analysis of all gene products is available for the construction of interactive networks consisting of individual protein–protein interactions, which, in turn, permit elaborate biological phenomena to be understood. Systems for detecting protein–protein interactions in vitro and in vivo have been developed, and have been modified to compensate for limitations. Using these novel approaches, comprehensive and reliable information on protein–protein interactions can be determined. Systems that permit this to be achieved are described in this review.


Applied Microbiology and Biotechnology | 2007

High-efficiency recovery of target cells using improved yeast display system for detection of protein–protein interactions

Nobuo Fukuda; Jun Ishii; Seiji Shibasaki; Mitsuyoshi Ueda; Hideki Fukuda; Akihiko Kondo

We constructed a high-throughput screening (HTS) system for target cells based on the detection of protein–protein interactions by flow cytometric sorting due to the improvement in the yeast cell surface display system. Interaction model proteins, which are the ZZ domain derived from Staphylococcus aureus and the Fc part of human immunoglobulin G (IgG), were displayed on the yeast cell surface. We achieved a rapid and enhanced expression of these proteins as a result of adopting an appropriate yeast strain and a suitable promoter. The displayed ZZ domain had an ability to bind to rabbit IgG and the displayed Fc part to protein A. These were confirmed by flow cytometry and fluorescence microscopy. Furthermore, the cells displaying the ZZ domain or Fc part were isolated from the model libraries constructed by mixing the control yeast cells with the target yeast cells. The ratio of the target cells was increased from 0.0001% to more than 70% by two cycles of cell sorting. These results indicate that we can achieve a rapid and highly efficient isolation method for the target cells with FACSCalibur and that this method will further extend the application of flow cytometric sorting to library selections.


Applied Microbiology and Biotechnology | 2007

Construction of a novel synergistic system for production and recovery of secreted recombinant proteins by the cell surface engineering

Seiji Shibasaki; Ai Kawabata; Jun Ishii; Shunsuke Yagi; Tetsuya Kadonosono; Michiko Kato; Nobuo Fukuda; Akihiko Kondo; Mitsuyoshi Ueda

We determined whether the cocultivation of yeast cells displaying a ZZ-domain and secreting an Fc fusion protein can be a novel tool for the recovery of secreted recombinant proteins. The ZZ-domain from Staphylococcus aureus protein A was displayed on the cell surface of Saccharomyces cerevisiae under the control of the GAL1 promoter. Strain S. cerevisiae BY4742 cells displaying the ZZ-domain on their surface were used for cocultivation with cells that produce a target protein fused to the Fc fragment as an affinity tag. The enhanced green fluorescent protein or Rhizopus oryzae lipase was genetically fused to the N and C termini of the Fc fragment of human immunoglobulin G, respectively. Through analysis by fluorescence-activated cell sorting and enzymatic assay, it was demonstrated that these fusion proteins are successfully produced in the medium and recovered by affinity binding with the cell surface displaying the ZZ-domain. These results suggest that the ZZ-domain-displaying cell and Fc fusion protein-secreting cell can be applied to use in synergistic process of production and recovery of secreted recombinant proteins.


Applied Microbiology and Biotechnology | 2009

Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering

Ken Matsui; Kouichi Kuroda; Mitsuyoshi Ueda

The cell wall of Saccharomyces cerevisiae plays an essential role in the biophysical characteristics of the cell surface. The modification of the cell wall property is an important factor for cellular adaptation to a stressful environment. In this study, we randomly modified the cell wall by displaying combinatorial random peptides on the yeast cell surface, and by screening, we successfully obtained a novel peptide, Scr35, that endowed yeasts with acid tolerance. The yeast, surface-modified by Scr35, was able to grow well under acidic condition and low glucose condition and showed high glucose uptake activity. However, the growth of the modified yeast became inferior as extracellular pH became higher. This inferiority was rescued by decreasing glucose concentration in a medium. Our results suggest that the optimum pH of a medium becomes low when the newly created Scr35 affects glucose uptake activity through cell-surface modification. Therefore, such artificial modification of the cell surface has a great potential as a useful tool for breeding acid-tolerant yeasts for industrial applications of S. cerevisiae as a biocatalyst.


Applied Microbiology and Biotechnology | 2006

Effect of flocculation on performance of arming yeast in direct ethanol fermentation

Khaw Teik Seong; Yoshio Katakura; Kazuaki Ninomiya; Yohei Bito; Satoshi Katahira; Akihiko Kondo; Mitsuyoshi Ueda; Suteaki Shioya

In the direct ethanol fermentation of raw starch by arming yeast with α-amylase and glucoamylase, it is preferable to use a flocculent yeast because it can be recovered without centrifugation. Three types of arming yeast system, I (nonflocculent), II (mildly flocculent), and III (heavily flocculent), were constructed and their fermentation performances were compared. With an increase in the degree of flocculation, specific ethanol production rate for soluble starch decreased (0.19, 0.17, and 0.12xa0g g-dry-cell−1 h−1 for systems I, II, and III, respectively), but that for raw starch did not decrease as much as expected (0.06, 0.06, and 0.04xa0g g-dry-cell−1 h−1 for systems I, II and III, respectively). Microscopic observation revealed that many starch granules were captured in the yeast flocs in system III during the direct ethanol fermentation of raw starch. It was suggested that the capture of starch granules increases apparent substrate concentration for amylolytic enzymes in arming yeast cell flocs; thus, the specific ethanol production rate of system III was kept at a level comparable to those of the other systems.


Applied Microbiology and Biotechnology | 2006

Screening for candidate genes involved in tolerance to organic solvents in yeast

Ken Matsui; Takashi Hirayama; Kouichi Kuroda; Katsuhiko Shirahige; Toshihiko Ashikari; Mitsuyoshi Ueda

Saccharomyces cerevisiae mutant strain, KK-211, isolated from serial culture in medium containing isooctane showed an extremely higher tolerance to the hydrophobic organic-solvents, which are toxic to yeast cells compared to the wild-type parent strain, DY-1. To detect genes that are related to this tolerance, a DNA microarray analysis was performed using mRNAs isolated from strains DY-1 and KK-211. Fourteen genes were identified as being related to the tolerance. The expression of 12 genes including ICT1, YNL190W, and PRY3, was induced while the expression of two genes including PHO84 was repressed in strain KK-211. Two genes, ICT1 and YNL190W showed the same profile in the DNA microarray analysis and a differential display-polymerase chain reaction analysis. But, there is no detectable difference in the expression profile of KK-211 cells cultured with or without isooctane. The results suggest that change in expression levels of multiple genes that confer the modification function of the cell surface, not by a single gene, might be required for yeast cell tolerance to organic solvents.


Applied Microbiology and Biotechnology | 2007

Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface

Norihiko Okochi; Michiko Kato-Murai; Tetsuya Kadonosono; Mitsuyoshi Ueda

Lc-WT, the wild-type light chain of antibody, and Lc-Triad, its double mutant with E1D and T27aS designing for the construction of catalytic triad within Asp1, Ser27a, and original His93 residues, were displayed on the cell surface of the protease-deficient yeast strain BJ2168. When each cell suspension was reacted with BODIPY FL casein and seven kinds of peptide-MCA substrates, respectively, a remarkable difference in hydrolytic activities toward Suc-GPLGP-MCA (succinyl-Gly-Pro-Leu-Gly-Pro-MCA), a substrate toward collagenase-like peptidase, was observed between the constructs: Lc-Triad-displaying cells showed higher catalytic activity than Lc-WT-displaying cells. The difference disappeared in the presence of the serine protease inhibitor diisopropylfluorophosphate, suggesting that the three amino acid residues, Ser27a, His93, and Asp1, functioned as a catalytic triad responsible for the proteolytic activity in a similar way to the anti-vasoactive intestinal peptide (VIP) antibody light chain. A serine protease-like catalytic triad (Ser, His, and Asp) is considered to be directly involved in the catalytic mechanism of the anti-VIP antibody light chain, which moderately catalyzes the hydrolysis of VIP. These results suggest the possibility of new approach for the creation of tailor-made proteases beyond limitations of the traditional immunization approach.

Collaboration


Dive into the Mitsuyoshi Ueda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seiji Shibasaki

Hyogo University of Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge