Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miyuki Yano is active.

Publication


Featured researches published by Miyuki Yano.


Circulation Research | 2005

Adenosine Monophosphate-Activated Protein Kinase Suppresses Vascular Smooth Muscle Cell Proliferation Through the Inhibition of Cell Cycle Progression

Motoyuki Igata; Hiroyuki Motoshima; Kaku Tsuruzoe; Kanou Kojima; Takeshi Matsumura; Tatsuya Kondo; Tetsuya Taguchi; Kazuhiko Nakamaru; Miyuki Yano; Daisuke Kukidome; Kazuya Matsumoto; Tetsushi Toyonaga; Tomoichiro Asano; Takeshi Nishikawa; Eiichi Araki

Vascular smooth muscle cell (VSMC) proliferation is a critical event in the development and progression of vascular diseases, including atherosclerosis. We investigated whether the activation of adenosine monophosphate-activated protein kinase (AMPK) could suppress VSMC proliferation and inhibit cell cycle progression. Treatment of human aortic smooth muscle cells (HASMCs) or isolated rabbit aortas with the AMPK activator 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) induced phosphorylation of AMPK and acetyl Co-A carboxylase. AICAR significantly inhibited HASMC proliferation induced by both platelet-derived growth factor-BB (PDGF-BB) and fetal calf serum (FCS). Treatment with AICAR inhibited the phosphorylation of retinoblastoma gene product (Rb) induced by PDGF-BB or FCS, and increased the expression of cyclin-dependent kinase inhibitor p21CIP but not that of p27KIP. Pharmacological inhibition of AMPK or overexpression of dominant negative-AMPK inhibited both the suppressive effect of AICAR on cell proliferation and the phosphorylation of Rb, suggesting that the effect of AICAR is mediated through the activation of AMPK. Cell cycle analysis in HASMCs showed that AICAR significantly increased cell population in G0/G1-phase and reduced that in S- and G2/M-phase, suggesting AICAR induced cell cycle arrest. AICAR increased both p53 protein and Ser-15 phosphorylated p53 in HASMCs, which were blocked by inhibition of AMPK. In isolated rabbit aortas, AICAR also increased Ser-15 phosphorylation and protein expression of p53 and inhibited Rb phosphorylation induced by FCS. These data suggest for the first time that AMPK suppresses VSMC proliferation via cell cycle regulation by p53 upregulation. Therefore, AMPK activation in VSMCs may be a therapoietic target for the prevention of vascular diseases.


Circulation Research | 2007

Statins Activate Peroxisome Proliferator-Activated Receptor γ Through Extracellular Signal-Regulated Kinase 1/2 and p38 Mitogen-Activated Protein Kinase–Dependent Cyclooxygenase-2 Expression in Macrophages

Miyuki Yano; Takeshi Matsumura; Takafumi Senokuchi; Norio Ishii; Yusuke Murata; Kayo Taketa; Hiroyuki Motoshima; Tetsuya Taguchi; Kazuhiro Sonoda; Daisuke Kukidome; Yoh Takuwa; Teruo Kawada; Michael Brownlee; Takeshi Nishikawa; Eiichi Araki

Both statins and peroxisome proliferator-activated receptor (PPAR)γ ligands have been reported to protect against the progression of atherosclerosis. In the present study, we investigated the effects of statins on PPARγ activation in macrophages. Statins increased PPARγ activity, which was inhibited by mevalonate, farnesylpyrophosphate, or geranylgeranylpyrophosphate. Furthermore, a farnesyl transferase inhibitor and a geranylgeranyl transferase inhibitor mimicked the effects of statins. Statins inhibited the membrane translocations of Ras, RhoA, Rac, and Cdc42, and overexpression of dominant-negative mutants of RhoA (DN-RhoA) and Cdc42 (DN-Cdc42), but not of Ras or Rac, increased PPARγ activity. Statins induced extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. However, DN-RhoA and DN-Cdc42 activated p38 MAPK, but not ERK1/2. ERK1/2- or p38 MAPK–specific inhibitors abrogated statin-induced PPARγ activation. Statins induced cyclooxygenase (COX)-2 expression and increased intracellular 15-deoxy-&Dgr;12,14-prostaglandin J2 (15d-PGJ2) levels through ERK1/2- and p38 MAPK–dependent pathways, and inhibitors or small interfering RNA of COX-2 inhibited statin-induced PPARγ activation. Statins also activate PPARα via COX-2–dependent increases in 15d-PGJ2 levels. We further demonstrated that statins inhibited lipopolysaccharide-induced tumor necrosis factor α or monocyte chemoattractant protein-1 mRNA expression, and these effects by statins were abrogated by the PPARγ antagonist T0070907 or by small interfering RNA of PPARγ or PPARα. Statins also induced ATP-binding cassette protein A1 or CD36 mRNA expression, and these effects were suppressed by small interfering RNAs of PPARγ or PPARα. In conclusion, statins induce COX-2–dependent increase in 15d-PGJ2 level through a RhoA- and Cdc42-dependent p38 MAPK pathway and a RhoA- and Cdc42-independent ERK1/2 pathway, thereby activating PPARγ. Statins also activate PPARα via COX-2–dependent pathway. These effects of statins may explain their antiatherogenic actions.


Diabetes | 2006

Impact of Mitochondrial Reactive Oxygen Species and Apoptosis Signal–Regulating Kinase 1 on Insulin Signaling

Koujiro Imoto; Daisuke Kukidome; Takeshi Nishikawa; Takako Matsuhisa; Kazuhiro Sonoda; Kazuo Fujisawa; Miyuki Yano; Hiroyuki Motoshima; Tetsuya Taguchi; Kaku Tsuruzoe; Takeshi Matsumura; Hidenori Ichijo; Eiichi Araki

Tumor necrosis factor (TNF)-α inhibits insulin action; however, the precise mechanisms are unknown. It was reported that TNF-α could increase mitochondrial reactive oxygen species (ROS) production, and apoptosis signal–regulating kinase 1 (ASK1) was reported to be required for TNF-α–induced apoptosis. Here, we examined roles of mitochondrial ROS and ASK1 in TNF-α–induced impaired insulin signaling in cultured human hepatoma (Huh7) cells. Using reduced MitoTracker Red probe, we confirmed that TNF-α increased mitochondrial ROS production, which was suppressed by overexpression of either uncoupling protein-1 (UCP)-1 or manganese superoxide dismutase (MnSOD). TNF-α significantly activated ASK1, increased serine phosphorylation of insulin receptor substrate (IRS)-1, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, and all of these effects were inhibited by overexpression of either UCP-1 or MnSOD. Similar to TNF-α, overexpression of wild-type ASK1 increased serine phosphorylation of IRS-1 and decreased insulin-stimulated tyrosine phosphorylation of IRS-1, whereas overexpression of dominant-negative ASK1 ameliorated these TNF-α–induced events. In addition, TNF-α activated c-jun NH2-terminal kinases (JNKs), and this observation was partially inhibited by overexpression of UCP-1, MnSOD, or dominant-negative ASK1. These results suggest that TNF-α increases mitochondrial ROS and activates ASK1 in Huh7 cells and that these TNF-α–induced phenomena contribute, at least in part, to impaired insulin signaling.


Journal of Biological Chemistry | 2005

Statins suppress oxidized low density lipoprotein-induced macrophage proliferation by inactivation of the small G protein-p38 MAPK pathway

Takafumi Senokuchi; Takeshi Matsumura; Masakazu Sakai; Miyuki Yano; Tetsuya Taguchi; Tomoko Matsuo; Kazuhiro Sonoda; Daisuke Kukidome; Koujiroh Imoto; Takeshi Nishikawa; Shokei Kim-Mitsuyama; Yoh Takuwa; Eiichi Araki

Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) ameliorate atherosclerotic diseases. Macrophages play an important role in the development and subsequent stability of atherosclerotic plaques. We reported previously that oxidized low density lipoprotein (Ox-LDL) induced macrophage proliferation through the secretion of granulocyte/macrophage colony-stimulating factor (GM-CSF) and the consequent activation of p38 MAPK. The present study was designed to elucidate the mechanism of the inhibitory effect of statins on macrophage proliferation. Mouse peritoneal macrophages were used in our study. Cerivastatin and simvastatin each inhibited Ox-LDL-induced [3H]thymidine incorporation into macrophages. Statins did not inhibit Ox-LDL-induced GM-CSF production, but inhibited GM-CSF-induced p38 MAPK activation. Farnesyl transferase inhibitor and geranylgeranyl transferase inhibitor inhibited GM-CSF-induced macrophage proliferation, and farnesyl pyrophosphate and geranylgeranyl pyrophosphate prevented the effect of statins. GM-CSF-induced p38 MAPK phosphorylation was also inhibited by farnesyl transferase inhibitor or geranylgeranyl transferase inhibitor, and farnesyl pyrophosphate and geranylgeranyl pyrophosphate prevented the suppression of GM-CSF-induced p38 MAPK phosphorylation by statins. Furthermore, we found that statin significantly inhibited the membrane translocation of the small G protein family members Ras and Rho. GM-CSF-induced p38 MAPK activation and macrophage proliferation was partially inhibited by overexpression of dominant negative Ras and completely by that of RhoA. In conclusion, statins inhibited GM-CSF-induced Ras- or RhoA-p38 MAPK signal cascades, thereby suppressing Ox-LDL-induced macrophage proliferation. The significant inhibition of macrophage proliferation by statins may also explain, at least in part, their anti-atherogenic action.


Journal of Biological Chemistry | 2008

Oxidized Low Density Lipoprotein Activates Peroxisome Proliferator-activated Receptor-α (PPARα) and PPARγ through MAPK-dependent COX-2 Expression in Macrophages

Kayo Taketa; Takeshi Matsumura; Miyuki Yano; Norio Ishii; Takafumi Senokuchi; Hiroyuki Motoshima; Yusuke Murata; Shokei Kim-Mitsuyama; Teruo Kawada; Hiroyuki Itabe; Motohiro Takeya; Takeshi Nishikawa; Kaku Tsuruzoe; Eiichi Araki

It has been reported that oxidized low density lipoprotein (Ox-LDL) can activate both peroxisome proliferator-activated receptor-α (PPARα) and PPARγ. However, the detailed mechanisms of Ox-LDL-induced PPARα and PPARγ activation are not fully understood. In the present study, we investigated the effect of Ox-LDL on PPARα and PPARγ activation in macrophages. Ox-LDL, but not LDL, induced PPARα and PPARγ activation in a dose-dependent manner. Ox-LDL transiently induced cyclooxygenase-2 (COX-2) mRNA and protein expression, and COX-2 specific inhibition by NS-398 or meloxicam or small interference RNA of COX-2 suppressed Ox-LDL-induced PPARα and PPARγ activation. Ox-LDL induced phosphorylation of ERK1/2 and p38 MAPK, and ERK1/2 specific inhibition abrogated Ox-LDL-induced COX-2 expression and PPARα and PPARγ activation, whereas p38 MAPK-specific inhibition had no effect. Ox-LDL decreased the amounts of intracellular long chain fatty acids, such as arachidonic, linoleic, oleic, and docosahexaenoic acids. On the other hand, Ox-LDL increased intracellular 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) level through ERK1/2-dependent overexpression of COX-2. Moreover, 15d-PGJ2 induced both PPARα and PPARγ activation. Furthermore, COX-2 and 15d-PGJ2 expression and PPAR activity were increased in atherosclerotic lesions of apoE-deficient mice. Finally, we investigated the involvement of PPARα and PPARγ on Ox-LDL-induced mRNA expression of ATP-binding cassette transporter A1 and monocyte chemoattractant protein-1. Interestingly, specific inhibition of PPARα and PPARγ suppressed Ox-LDL-induced ATP-binding cassette transporter A1 mRNA expression and enhanced Ox-LDL-induced monocyte chemoattractant protein-1 mRNA expression. In conclusion, Ox-LDL-induced increase in 15d-PGJ2 level through ERK1/2-dependent COX-2 expression is one of the mechanisms of PPARα and PPARγ activation in macrophages. These effects of Ox-LDL may control excess atherosclerotic progression.


Journal of Biological Chemistry | 2009

Activation of AMP-activated Protein Kinase Suppresses Oxidized Low-density Lipoprotein-induced Macrophage Proliferation

Norio Ishii; Takeshi Matsumura; Hiroyuki Kinoshita; Hiroyuki Motoshima; Kanou Kojima; Atsuyuki Tsutsumi; Shuji Kawasaki; Miyuki Yano; Takafumi Senokuchi; Tomoichiro Asano; Takeshi Nishikawa; Eiichi Araki

Macrophage-derived foam cells play important roles in the progression of atherosclerosis. We reported previously that ERK1/2-dependent granulocyte/macrophage colony-stimulating factor (GM-CSF) expression, leading to p38 MAPK/ Akt signaling, is important for oxidized low density lipoprotein (Ox-LDL)-induced macrophage proliferation. Here, we investigated whether activation of AMP-activated protein kinase (AMPK) could suppress macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages was assessed by [3H]thymidine incorporation and cell counting assays. The proliferation was significantly inhibited by the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and restored by dominant-negative AMPKα1, suggesting that AMPK activation suppressed macrophage proliferation. AICAR partially suppressed Ox-LDL-induced ERK1/2 phosphorylation and GM-CSF expression, suggesting that another mechanism is also involved in the AICAR-mediated suppression of macrophage proliferation. AICAR suppressed GM-CSF-induced macrophage proliferation without suppressing p38 MAPK/Akt signaling. GM-CSF suppressed p53 phosphorylation and expression and induced Rb phosphorylation. Overexpression of p53 or p27kip suppressed GM-CSF-induced macrophage proliferation. AICAR induced cell cycle arrest, increased p53 phosphorylation and expression, and suppressed GM-CSF-induced Rb phosphorylation via AMPK activation. Moreover, AICAR induced p21cip and p27kip expression via AMPK activation, and small interfering RNA (siRNA) of p21cip and p27kip restored AICAR-mediated suppression of macrophage proliferation. In conclusion, AMPK activation suppressed Ox-LDL-induced macrophage proliferation by suppressing GM-CSF expression and inducing cell cycle arrest. These effects of AMPK activation may represent therapeutic targets for atherosclerosis.


Diabetes | 2006

Activation of AMP-Activated Protein Kinase Reduces Hyperglycemia-Induced Mitochondrial Reactive Oxygen Species Production and Promotes Mitochondrial Biogenesis in Human Umbilical Vein Endothelial Cells

Daisuke Kukidome; Takeshi Nishikawa; Kazuhiro Sonoda; Koujiro Imoto; Kazuo Fujisawa; Miyuki Yano; Hiroyuki Motoshima; Tetsuya Taguchi; Takeshi Matsumura; Eiichi Araki


Atherosclerosis | 2004

Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase mediate macrophage proliferation induced by oxidized low-density lipoprotein.

Takafumi Senokuchi; Takeshi Matsumura; Masakazu Sakai; Tomoko Matsuo; Miyuki Yano; Shinsuke Kiritoshi; Kazuhiro Sonoda; Daisuke Kukidome; Takeshi Nishikawa; Eiichi Araki


Biochemical and Biophysical Research Communications | 2004

15d-PGJ2 inhibits oxidized LDL-induced macrophage proliferation by inhibition of GM-CSF production via inactivation of NF-κB

Tomoko Matsuo; Takeshi Matsumura; Masakazu Sakai; Takafumi Senokuchi; Miyuki Yano; Shinsuke Kiritoshi; Kazuhiro Sonoda; Daisuke Kukidome; Richard G. Pestell; Michael Brownlee; Takeshi Nishikawa; Eiichi Araki


Atherosclerosis | 2007

Troglitazone inhibits oxidized low-density lipoprotein-induced macrophage proliferation : Impact of the suppression of nuclear translocation of ERK1/2

Miyuki Yano; Takeshi Matsumura; Takafumi Senokuchi; Norio Ishii; Hiroyuki Motoshima; Tetsuya Taguchi; Tomoko Matsuo; Kazuhiro Sonoda; Daisuke Kukidome; Masakazu Sakai; Teruo Kawada; Takeshi Nishikawa; Eiichi Araki

Collaboration


Dive into the Miyuki Yano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge