Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daisuke Kukidome is active.

Publication


Featured researches published by Daisuke Kukidome.


Circulation Research | 2007

Statins Activate Peroxisome Proliferator-Activated Receptor γ Through Extracellular Signal-Regulated Kinase 1/2 and p38 Mitogen-Activated Protein Kinase–Dependent Cyclooxygenase-2 Expression in Macrophages

Miyuki Yano; Takeshi Matsumura; Takafumi Senokuchi; Norio Ishii; Yusuke Murata; Kayo Taketa; Hiroyuki Motoshima; Tetsuya Taguchi; Kazuhiro Sonoda; Daisuke Kukidome; Yoh Takuwa; Teruo Kawada; Michael Brownlee; Takeshi Nishikawa; Eiichi Araki

Both statins and peroxisome proliferator-activated receptor (PPAR)γ ligands have been reported to protect against the progression of atherosclerosis. In the present study, we investigated the effects of statins on PPARγ activation in macrophages. Statins increased PPARγ activity, which was inhibited by mevalonate, farnesylpyrophosphate, or geranylgeranylpyrophosphate. Furthermore, a farnesyl transferase inhibitor and a geranylgeranyl transferase inhibitor mimicked the effects of statins. Statins inhibited the membrane translocations of Ras, RhoA, Rac, and Cdc42, and overexpression of dominant-negative mutants of RhoA (DN-RhoA) and Cdc42 (DN-Cdc42), but not of Ras or Rac, increased PPARγ activity. Statins induced extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. However, DN-RhoA and DN-Cdc42 activated p38 MAPK, but not ERK1/2. ERK1/2- or p38 MAPK–specific inhibitors abrogated statin-induced PPARγ activation. Statins induced cyclooxygenase (COX)-2 expression and increased intracellular 15-deoxy-&Dgr;12,14-prostaglandin J2 (15d-PGJ2) levels through ERK1/2- and p38 MAPK–dependent pathways, and inhibitors or small interfering RNA of COX-2 inhibited statin-induced PPARγ activation. Statins also activate PPARα via COX-2–dependent increases in 15d-PGJ2 levels. We further demonstrated that statins inhibited lipopolysaccharide-induced tumor necrosis factor α or monocyte chemoattractant protein-1 mRNA expression, and these effects by statins were abrogated by the PPARγ antagonist T0070907 or by small interfering RNA of PPARγ or PPARα. Statins also induced ATP-binding cassette protein A1 or CD36 mRNA expression, and these effects were suppressed by small interfering RNAs of PPARγ or PPARα. In conclusion, statins induce COX-2–dependent increase in 15d-PGJ2 level through a RhoA- and Cdc42-dependent p38 MAPK pathway and a RhoA- and Cdc42-independent ERK1/2 pathway, thereby activating PPARγ. Statins also activate PPARα via COX-2–dependent pathway. These effects of statins may explain their antiatherogenic actions.


Diabetes | 2006

Impact of Mitochondrial Reactive Oxygen Species and Apoptosis Signal–Regulating Kinase 1 on Insulin Signaling

Koujiro Imoto; Daisuke Kukidome; Takeshi Nishikawa; Takako Matsuhisa; Kazuhiro Sonoda; Kazuo Fujisawa; Miyuki Yano; Hiroyuki Motoshima; Tetsuya Taguchi; Kaku Tsuruzoe; Takeshi Matsumura; Hidenori Ichijo; Eiichi Araki

Tumor necrosis factor (TNF)-α inhibits insulin action; however, the precise mechanisms are unknown. It was reported that TNF-α could increase mitochondrial reactive oxygen species (ROS) production, and apoptosis signal–regulating kinase 1 (ASK1) was reported to be required for TNF-α–induced apoptosis. Here, we examined roles of mitochondrial ROS and ASK1 in TNF-α–induced impaired insulin signaling in cultured human hepatoma (Huh7) cells. Using reduced MitoTracker Red probe, we confirmed that TNF-α increased mitochondrial ROS production, which was suppressed by overexpression of either uncoupling protein-1 (UCP)-1 or manganese superoxide dismutase (MnSOD). TNF-α significantly activated ASK1, increased serine phosphorylation of insulin receptor substrate (IRS)-1, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, and all of these effects were inhibited by overexpression of either UCP-1 or MnSOD. Similar to TNF-α, overexpression of wild-type ASK1 increased serine phosphorylation of IRS-1 and decreased insulin-stimulated tyrosine phosphorylation of IRS-1, whereas overexpression of dominant-negative ASK1 ameliorated these TNF-α–induced events. In addition, TNF-α activated c-jun NH2-terminal kinases (JNKs), and this observation was partially inhibited by overexpression of UCP-1, MnSOD, or dominant-negative ASK1. These results suggest that TNF-α increases mitochondrial ROS and activates ASK1 in Huh7 cells and that these TNF-α–induced phenomena contribute, at least in part, to impaired insulin signaling.


Journal of Biological Chemistry | 2005

Statins suppress oxidized low density lipoprotein-induced macrophage proliferation by inactivation of the small G protein-p38 MAPK pathway

Takafumi Senokuchi; Takeshi Matsumura; Masakazu Sakai; Miyuki Yano; Tetsuya Taguchi; Tomoko Matsuo; Kazuhiro Sonoda; Daisuke Kukidome; Koujiroh Imoto; Takeshi Nishikawa; Shokei Kim-Mitsuyama; Yoh Takuwa; Eiichi Araki

Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) ameliorate atherosclerotic diseases. Macrophages play an important role in the development and subsequent stability of atherosclerotic plaques. We reported previously that oxidized low density lipoprotein (Ox-LDL) induced macrophage proliferation through the secretion of granulocyte/macrophage colony-stimulating factor (GM-CSF) and the consequent activation of p38 MAPK. The present study was designed to elucidate the mechanism of the inhibitory effect of statins on macrophage proliferation. Mouse peritoneal macrophages were used in our study. Cerivastatin and simvastatin each inhibited Ox-LDL-induced [3H]thymidine incorporation into macrophages. Statins did not inhibit Ox-LDL-induced GM-CSF production, but inhibited GM-CSF-induced p38 MAPK activation. Farnesyl transferase inhibitor and geranylgeranyl transferase inhibitor inhibited GM-CSF-induced macrophage proliferation, and farnesyl pyrophosphate and geranylgeranyl pyrophosphate prevented the effect of statins. GM-CSF-induced p38 MAPK phosphorylation was also inhibited by farnesyl transferase inhibitor or geranylgeranyl transferase inhibitor, and farnesyl pyrophosphate and geranylgeranyl pyrophosphate prevented the suppression of GM-CSF-induced p38 MAPK phosphorylation by statins. Furthermore, we found that statin significantly inhibited the membrane translocation of the small G protein family members Ras and Rho. GM-CSF-induced p38 MAPK activation and macrophage proliferation was partially inhibited by overexpression of dominant negative Ras and completely by that of RhoA. In conclusion, statins inhibited GM-CSF-induced Ras- or RhoA-p38 MAPK signal cascades, thereby suppressing Ox-LDL-induced macrophage proliferation. The significant inhibition of macrophage proliferation by statins may also explain, at least in part, their anti-atherogenic action.


Biochemical and Biophysical Research Communications | 2009

TZDs reduce mitochondrial ROS production and enhance mitochondrial biogenesis

Kazuo Fujisawa; Takeshi Nishikawa; Daisuke Kukidome; Koujirou Imoto; Takeshi Yamashiro; Hiroyuki Motoshima; Takeshi Matsumura; Eiichi Araki

Although it has been reported that thiazolidinediones (TZDs) may reduce cardiovascular events in type 2 diabetic patients, its precise mechanism is unclear. We previously demonstrated that hyperglycemia-induced production of reactive oxygen species from mitochondria (mtROS) contributed to the development of diabetic complications, and metformin normalized mt ROS production by induction of MnSOD and promotion of mitochondrial biogenesis by activating the PGC-1alpha pathway. In this study, we examined whether TZDs could inhibit hyperglycemia-induced mtROS production by activating the PGC-1alpha pathway. We revealed that pioglitazone and ciglitazone attenuated hyperglycemia-induced ROS production in human umbilical vein endothelial cells (HUVECs). Both TZDs increased the expression of NRF-1, TFAM and MnSOD mRNA. Moreover, pioglitazone increased mtDNA and mitochondrial density. These results suggest that TZDs normalize hyperglycemia-induced mtROS production by induction of MnSOD and promotion of mitochondrial biogenesis by activating PGC-1alpha. This phenomenon could contribute to the prevention of diabetic vascular complications.


Cardiovascular Diabetology | 2013

Association between circulating leukocyte subtype counts and carotid intima-media thickness in Japanese subjects with type 2 diabetes

Takeshi Matsumura; Kayo Taketa; Hiroyuki Motoshima; Takafumi Senokuchi; Norio Ishii; Hiroyuki Kinoshita; Kazuki Fukuda; Sarie Yamada; Daisuke Kukidome; Tatsuya Kondo; Aya Hisada; Takahiko Katoh; Seiya Shimoda; Takeshi Nishikawa; Eiichi Araki

BackgroundAn increased leukocyte count is an independent risk factor for cardiovascular events, but the association between leukocyte subtype counts and carotid atherosclerosis in patients with diabetes has not been determined. We therefore investigated the correlation between leukocyte subtype counts and intima-media thickness of the common carotid artery (CCA-IMT) in subjects with type 2 diabetes.MethodsThis cross-sectional study involved 484 in-patients with type 2 diabetes (282 males and 202 females), who were hospitalized for glycemic control and underwent carotid ultrasonography at Kumamoto University Hospital between 2005 and 2011. Mean and maximum CCA-IMT was measured by high-resolution B-mode ultrasonography.ResultsUnivariate analyses revealed that mean CCA-IMT was positively correlated with age, systolic blood pressure, brachial-ankle pulse wave velocity (PWV), urinary albumin excretion and duration of diabetes, but was negatively correlated with diastolic blood pressure and fasting plasma glucose. Maximum CCA-IMT was positively and negatively correlated with the same factors as mean CCA-IMT except for fasting plasma glucose. Mean CCA-IMT was positively correlated with total leukocyte (r = 0.124, p = 0.007), monocyte (r = 0.373, p < 0.001), neutrophil (r = 0.139, p = 0.002) and eosinophil (r = 0.107, p = 0.019) counts. Maximum CCA-IMT was positively correlated with total leukocyte (r = 0.154, p < 0.001), monocyte (r = 0.398, p < 0.001), neutrophil (r = 0.152, p < 0.001) and basophil counts (r = 0.102, p = 0.027). Multiple regression analyses showed that monocyte count, age and PWV were significant and independent factors associated with mean CCA-IMT (adjusted R2 = 0.239, p < 0.001), and that monocyte count, age and urinary albumin excretion were significant and independent factors associated with maximum CCA-IMT (adjusted R2 = 0.277, p < 0.001).ConclusionsMonocyte counts were positively correlated with both mean CCA-IMT and maximum CCA-IMT in patients with type 2 diabetes. Monocyte count may be a useful predictor of macrovascular complications in patients with type 2 diabetes.Trial registrationTrial registry no:UMIN000003526.


Biochemical and Biophysical Research Communications | 2015

Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

Kazuki Fukuda; Takeshi Matsumura; Takafumi Senokuchi; Norio Ishii; Hiroyuki Kinoshita; Sarie Yamada; Saiko Murakami; Saya Nakao; Hiroyuki Motoshima; Tatsuya Kondo; Daisuke Kukidome; Shuji Kawasaki; Teruo Kawada; Takeshi Nishikawa; Eiichi Araki

The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe(-/-) mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe(-/-) mice. In conclusion, statins mediate anti-atherogenic effects through PPARγ activation in SMCs. These effects of statins on SMCs may be beneficial for the prevention of atherosclerosis.


Diabetes, Obesity and Metabolism | 2010

The effect of group-based lifestyle interventions on risk factors and insulin resistance in subjects at risk for metabolic syndrome: the Tabaruzaka Study 1

Takeshi Yamashiro; Takeshi Nishikawa; S. Isami; Chang Nian Wei; Kumiko Fukumoto; Hiroshi Matsuo; Tomoaki Yoshinaga; Daisuke Kukidome; Hiroyuki Motoshima; Takeshi Matsumura; Atsushi Ueda; Eiichi Araki

Aim: The aim of this study was to evaluate the efficacy of two group‐based lifestyle interventions in ameliorating the risk factors of metabolic syndrome (MS) and insulin resistance.


PLOS ONE | 2016

Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1

Kiminori Sada; Takeshi Nishikawa; Daisuke Kukidome; Tomoaki Yoshinaga; Nobuhiro Kajihara; Kazuhiro Sonoda; Takafumi Senokuchi; Hiroyuki Motoshima; Takeshi Matsumura; Eiichi Araki

We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.


Journal of Clinical Biochemistry and Nutrition | 2016

Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice

Satoko Hanatani; Hiroyuki Motoshima; Yuki Takaki; Shuji Kawasaki; Motoyuki Igata; Takeshi Matsumura; Tatsuya Kondo; Takafumi Senokuchi; Norio Ishii; Junji Kawashima; Daisuke Kukidome; Seiya Shimoda; Takeshi Nishikawa; Eiichi Araki

The induction of beige adipogenesis within white adipose tissue, known as “browning”, has received attention as a novel potential anti-obesity strategy. The expression of some characteristic genes including PR domain containing 16 is induced during the browning process. Although acetate has been reported to suppress weight gain in both rodents and humans, its potential effects on beige adipogenesis in white adipose tissue have not been fully characterized. We examined the effects of acetate treatment on 3T3-L1 cells and in obese diabetic KK-Ay mice. The mRNA expression levels of genes involved in beige adipocyte differentiation and genes selectively expressed in beige adipocytes were significantly elevated in both 3T3-L1 cells incubated with 1.0 mM acetate and the visceral white adipose tissue from mice treated with 0.6% acetate for 16 weeks. In KK-Ay mice, acetate reduced the food efficiency ratio and increased the whole-body oxygen consumption rate. Additionally, reduction of adipocyte size and uncoupling protein 1-positive adipocytes and interstitial areas with multilocular adipocytes appeared in the visceral white adipose tissue of acetate-treated mice, suggesting that acetate induced initial changes of “browning”. In conclusion, acetate alters the expression of genes involved in beige adipogenesis and might represent a potential therapeutic agent to combat obesity.


Endocrinology, Diabetes & Metabolism Case Reports | 2016

Coexistence of resistance to thyroid hormone and papillary thyroid carcinoma

Motoyuki Igata; Kaku Tsuruzoe; Junji Kawashima; Daisuke Kukidome; Tatsuya Kondo; Hiroyuki Motoshima; Seiya Shimoda; Noboru Furukawa; Takeshi Nishikawa; Nobuhiro Miyamura; Eiichi Araki

Summary Resistance to thyroid hormone (RTH) is a syndrome of reduced tissue responsiveness to thyroid hormones. RTH is majorly caused by mutations in the thyroid hormone receptor beta (THRB) gene. Recent studies indicated a close association of THRB mutations with human cancers, but the role of THRB mutation in carcinogenesis is still unclear. Here, we report a rare case of RTH with a papillary thyroid carcinoma (PTC). A 26-year-old woman was referred to our hospital due to a thyroid tumor and hormonal abnormality. She had elevated serum thyroid hormones and non-suppressed TSH levels. Genetic analysis of THRB identified a missense mutation, P452L, leading to a diagnosis of RTH. Ultrasound-guided fine-needle aspiration biopsy of the tumor and lymph nodes enabled the cytological diagnosis of PTC with lymph node metastases. Total thyroidectomy and neck lymph nodes dissection were performed. Following surgery, thyroxine replacement (≥500 μg) was necessary to avoid the symptoms of hypothyroidism and to maintain her TSH levels within the same range as before the operation. During the follow-up, basal thyroglobulin (Tg) levels were around 6 ng/ml and TSH-stimulated Tg levels were between 12 and 20 ng/ml. Up to present, the patient has had no recurrence of PTC. This indicates that these Tg values are consistent with a biochemical incomplete response or an indeterminate response. There is no consensus regarding the management of thyroid carcinoma in patients with RTH, but aggressive treatments such as total thyroidectomy followed by radioiodine (RAI) and TSH suppression therapy are recommended. Learning points There are only a few cases reporting the coexistence of RTH and thyroid carcinoma. Moreover, our case would be the first case presenting one with lymph node metastases. Recent studies indicated a close association of THRB mutations with human cancers, but the role of THRB mutation in carcinogenesis is still unclear. When total thyroidectomy is performed in patients with RTH, a large amount of thyroxine is needed to maintain their thyroid function. There is no consensus regarding the management of thyroid carcinoma in patient with RTH, but effective treatments such as total thyroidectomy followed by RAI and TSH suppression therapy are recommended.

Collaboration


Dive into the Daisuke Kukidome's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge