Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mizuki Takenaka is active.

Publication


Featured researches published by Mizuki Takenaka.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants

Mizuki Takenaka; Anja Zehrmann; Daniil Verbitskiy; Matthias Kugelmann; Barbara Härtel; Axel Brennicke

RNA editing in plastids and mitochondria of flowering plants changes hundreds of selected cytidines to uridines, mostly in coding regions of mRNAs. Specific sequences around the editing sites are presumably recognized by up to 200 pentatricopeptide repeat (PPR) proteins. The here identified family of multiple organellar RNA editing factor (MORF) proteins provides additional components of the RNA editing machinery in both plant organelles. Two MORF proteins are required for editing in plastids; at least two are essential for editing in mitochondria. The loss of a MORF protein abolishes or lowers editing at multiple sites, many of which are addressed individually by PPR proteins. In plastids, both MORF proteins are required for complete editing at almost all sites, suggesting a heterodimeric complex. In yeast two-hybrid and pull-down assays, MORF proteins can connect to form hetero- and homodimers. Furthermore, MORF proteins interact selectively with PPR proteins, establishing a more complex editosome in plant organelles than previously thought.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system.

Katsuyuki T. Yamato; Kimitsune Ishizaki; Masaki Fujisawa; Sachiko Okada; Shigeki Nakayama; Mariko Fujishita; Hiroki Bando; Kohei Yodoya; Kiwako Hayashi; Tomoyuki Bando; Akiko Hasumi; Tomohisa Nishio; Ryoko Sakata; Masayuki Yamamoto; Arata Yamaki; Masataka Kajikawa; Takashi Yamano; Taku Nishide; Seung-Hyuk Choi; Yuu Shimizu-Ueda; Tsutomu Hanajiri; Megumi Sakaida; Kaoru Kono; Mizuki Takenaka; Shohei Yamaoka; Chiaki Kuriyama; Yoshito Kohzu; Hiroyuki Nishida; Axel Brennicke; Tadasu Shin-I

Y chromosomes are different from other chromosomes because of a lack of recombination. Until now, complete sequence information of Y chromosomes has been available only for some primates, although considerable information is available for other organisms, e.g., several species of Drosophila. Here, we report the gene organization of the Y chromosome in the dioecious liverwort Marchantia polymorpha and provide a detailed view of a Y chromosome in a haploid organism. On the 10-Mb Y chromosome, 64 genes are identified, 14 of which are detected only in the male genome and are expressed in reproductive organs but not in vegetative thalli, suggesting their participation in male reproductive functions. Another 40 genes on the Y chromosome are expressed in thalli and male sexual organs. At least six of these genes have diverged X-linked counterparts that are in turn expressed in thalli and sexual organs in female plants, suggesting that these X- and Y-linked genes have essential cellular functions. These findings indicate that the Y and X chromosomes share the same ancestral autosome and support the prediction that in a haploid organism essential genes on sex chromosomes are more likely to persist than in a diploid organism.


PLOS ONE | 2013

Improved Computational Target Site Prediction for Pentatricopeptide Repeat RNA Editing Factors

Mizuki Takenaka; Anja Zehrmann; Axel Brennicke; Knut Graichen

Pentatricopeptide repeat (PPR) proteins with an E domain have been identified as specific factors for C to U RNA editing in plant organelles. These PPR proteins bind to a unique sequence motif 5′ of their target editing sites. Recently, involvement of a combinatorial amino acid code in the P (normal length) and S type (short) PPR domains in sequence specific RNA binding was reported. PPR proteins involved in RNA editing, however, contain not only P and S motifs but also their long variants L (long) and L2 (long2) and the S2 (short2) motifs. We now find that inclusion of these motifs improves the prediction of RNA editing target sites. Previously overlooked RNA editing target sites are suggested from the PPR motif structures of known E-class PPR proteins and are experimentally verified. RNA editing target sites are assigned for the novel PPR protein MEF32 (mitochondrial editing factor 32) and are confirmed in the cDNA.


Plant Journal | 2010

The PPR protein encoded by the LOVASTATIN INSENSITIVE 1 gene is involved in RNA editing at three sites in mitochondria of Arabidopsis thaliana

Daniil Verbitskiy; Anja Zehrmann; Johannes A. van der Merwe; Axel Brennicke; Mizuki Takenaka

Post-transcriptional RNA editing in flowering plant mitochondria alters several hundred nucleotides from cytidine to uridine, mostly in mRNAs. To characterize the factors involved in RNA editing in plant mitochondria, we initiated a screen for nuclear mutants defective in RNA editing at specific sites. Here we identify the nuclear-encoded gene MEF11, which is involved in RNA editing of the three sites cox3-422, nad4-124 and ccb203-344 in Arabidopsis thaliana. A T-DNA insertion line of this gene was previously characterized as showing enhanced tolerance to the compound lovastatin, an inhibitor of the mevalonate pathway of isoprenoid biosynthesis. The mef11-1 mutant described here shows similar tolerance to lovastatin. Identification of the function of the MEF11 protein in site-specific mitochondrial RNA editing suggests indirect effects of retrograde signalling from mitochondria to the cytoplasm to evoke alteration of the mevalonate pathway. The editing sites cox3-422 and ccb203-344 each alter amino acids that are conserved in the respective proteins, while the nad4-124 site is silent. The single amino acid change in the mef11-1 mutant occurs in the second pentatricopeptide repeat, suggesting that this motif is required for site-specific RNA editing.


Plant Physiology | 2010

MEF9, an E-Subclass Pentatricopeptide Repeat Protein, Is Required for an RNA Editing Event in the nad7 Transcript in Mitochondria of Arabidopsis

Mizuki Takenaka

RNA editing in plants alters specific nucleotides from C to U in mRNAs in plastids and in mitochondria. I here characterize the nuclear gene MITOCHONDRIAL EDITING FACTOR9 (MEF9) that is required for RNA editing of the site nad7-200 in the nad7 mitochondrial mRNA in Arabidopsis (Arabidopsis thaliana). The MEF9 protein belongs to the E subfamily of pentatricopeptide repeat proteins and unlike the three previously identified mitochondrial editing factors MEF1 and MEF11 in Arabidopsis and OGR1 in rice (Oryza sativa) does not contain a DYW C-terminal domain. In addition, the E domain is incomplete, but seems to be functionally required, since one of the two independent EMS mutants encodes a MEF9 protein truncated by a stop codon at the beginning of the E domain. In both mutant plants premature stop codons in MEF9 inactivate RNA editing at site nad7-200. The homozygous mutant plants are viable and develop rather normally. The lack of RNA editing at site nad7-200 thus seems to be tolerated although this editing event is conserved in most plant species or the genomic sequence already codes for a T at this position, resulting in a generally conserved amino acid codon.


Journal of Biological Chemistry | 2010

Reverse Genetic Screening Identifies Five E-class PPR Proteins Involved in RNA Editing in Mitochondria of Arabidopsis thaliana

Mizuki Takenaka; Daniil Verbitskiy; Anja Zehrmann; Axel Brennicke

RNA editing in flowering plant mitochondria post-transcriptionally alters several hundred nucleotides from C to U, mostly in mRNAs. Several factors required for specific RNA-editing events in plant mitochondria and plastids have been identified, all of them PPR proteins of the PLS subclass with a C-terminal E-domain and about half also with an additional DYW domain. Based on this information, we here probe the connection between E-PPR proteins and RNA editing in plant mitochondria. We initiated a reverse genetics screen of T-DNA insertion lines in Arabidopsis thaliana and investigated 58 of the 150 E-PPR-coding genes for a function in RNA editing. Six genes were identified to be involved in mitochondrial RNA editing at specific sites. Homozygous mutants of the five genes MEF18-MEF22 display no gross disturbance in their growth or development patterns, suggesting that the editing sites affected are not crucial at least in the greenhouse. These results show that a considerable percentage of the E-PPR proteins are involved in the functional processing of site-specific RNA editing in plant mitochondria.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene

Sachiko Okada; Takefumi Sone; Masaki Fujisawa; Shigeki Nakayama; Mizuki Takenaka; Kimitsune Ishizaki; Kaoru Kono; Yuu Shimizu-Ueda; Tsutomu Hanajiri; Katsuyuki T. Yamato; Hideya Fukuzawa; Axel Brennicke; Kanji Ohyama

The haploid liverwort Marchantia polymorpha has heteromorphic sex chromosomes, an X chromosome in the female and a Y chromosome in the male. We here report on the repetitive structure of the liverwort Y chromosome through the analysis of male-specific P1-derived artificial chromosome (PAC) clones, pMM4G7 and pMM23-130F12. Several chromosome-specific sequence elements of ≈70 to 400 nt are combined into larger arrangements, which in turn are assembled into extensive Y chromosome-specific stretches. These repeat sequences contribute 2–3 Mb to the Y chromosome based on the observations of three different approaches: fluorescence in situ hybridization, dot blot hybridization, and the frequency of clones containing the repeat sequences in the genomic library. A novel Y chromosome-specific gene family was found embedded among these repeat sequences. This gene family encodes a putative protein with a RING finger motif and is expressed specifically in male sexual organs. To our knowledge, there have been no other reports for an active Y chromosome-specific gene in plants. The chromosome-specific repeat sequences possibly contribute to determining the identity of the Y chromosome in M. polymorpha as well as to maintaining genes required for male functions, as in mammals such as human.


The Plant Cell | 2012

PPR2263, a DYW-Subgroup Pentatricopeptide Repeat Protein, Is Required for Mitochondrial nad5 and cob Transcript Editing, Mitochondrion Biogenesis, and Maize Growth

Davide Sosso; Sylvie Mbelo; Vanessa Vernoud; Ghislaine Gendrot; Annick Dedieu; Pierre Chambrier; Myriam Dauzat; Laure Heurtevin; Virginie Guyon; Mizuki Takenaka; Peter M. Rogowsky

The work identifies maize PPR2263 and Arabidopsis thaliana MEF29 as orthologous mitochondrial RNA editing proteins, the first such orthologs shown to share target sites between a monocot and a dicot. In maize, the loss of editing of the cob transcript by PPR2263 causes the loss of a protein complex in the mitochondrial respiratory chain and ultimately slow growth of mutant plants. RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain–containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana. Both the maize and the Arabidopsis proteins show preferential localization to mitochondria but are also detected in chloroplasts. In maize, the corresponding ppr2263 mutation causes growth defects in kernels and seedlings. Embryo and endosperm growth are reduced, leading to the production of small but viable kernels. Mutant plants have narrower and shorter leaves, exhibit a strong delay in flowering time, and generally do not reach sexual maturity. Whereas mutant chloroplasts do not have major defects, mutant mitochondria lack complex III and are characterized by a compromised ultrastructure, increased transcript levels, and the induction of alternative oxidase. The results suggest that mitochondrial RNA editing at the cob-908 site is necessary for mitochondrion biogenesis, cell division, and plant growth in maize.


Journal of Biological Chemistry | 2011

The Pentatricopeptide Repeat Protein OTP87 Is Essential for RNA Editing of nad7 and atp1 Transcripts in Arabidopsis Mitochondria

Kamel Hammani; Catherine Colas des Francs-Small; Mizuki Takenaka; Sandra K. Tanz; Kenji Okuda; Toshiharu Shikanai; Axel Brennicke; Ian Small

In plant organelles, RNA editing is a post-transcriptional mechanism that converts specific cytidines to uridines in RNA of both mitochondria and plastids, altering the information encoded by the gene. The cytidine to be edited is determined by a cis-element surrounding the editing site that is specifically recognized and bound by a trans-acting factor. All the trans-acting editing factors identified so far in plant organelles are members of a large protein family, the pentatricopeptide repeat (PPR) proteins. We have identified the Organelle Transcript Processing 87 (OTP87) gene, which is required for RNA editing of the nad7-C24 and atp1-C1178 sites in Arabidopsis mitochondria. OTP87 encodes an E-subclass PPR protein with an unusually short E-domain. The recombinant protein expressed in Escherichia coli specifically binds to RNAs comprising 30 nucleotides upstream and 10 nucleotides downstream of the nad7-C24 and atp1-C1178 editing sites. The loss-of-function of OTP87 results in small plants with growth and developmental delays. In the otp87 mutant, the amount of assembled respiratory complex V (ATP synthase) is highly reduced compared with the wild type suggesting that the amino acid alteration in ATP1 caused by loss of editing at the atp1-C1178 site affects complex V assembly in mitochondria.


Plant Journal | 2012

SLO2, a mitochondrial pentatricopeptide repeat protein affecting several RNA editing sites, is required for energy metabolism

Qiang Zhu; Jasper Dugardeyn; Chunyi Zhang; Mizuki Takenaka; Kristina Kühn; Christian Craddock; Jan Smalle; Michael Karampelias; Jürgen Denecke; Janny L. Peters; Tom Gerats; Axel Brennicke; Peter J. Eastmond; Etienne H. Meyer; Dominique Van Der Straeten

Pentatricopeptide repeat (PPR) proteins belong to a family of approximately 450 members in Arabidopsis, of which few have been characterized. We identified loss of function alleles of SLO2, defective in a PPR protein belonging to the E+ subclass of the P-L-S subfamily. slo2 mutants are characterized by retarded leaf emergence, restricted root growth, and late flowering. This phenotype is enhanced in the absence of sucrose, suggesting a defect in energy metabolism. The slo2 growth retardation phenotypes are largely suppressed by supplying sugars or increasing light dosage or the concentration of CO₂. The SLO2 protein is localized in mitochondria. We identified four RNA editing defects and reduced editing at three sites in slo2 mutants. The resulting amino acid changes occur in four mitochondrial proteins belonging to complex I of the electron transport chain. Both the abundance and activity of complex I are highly reduced in the slo2 mutants, as well as the abundance of complexes III and IV. Moreover, ATP, NAD+, and sugar contents were much lower in the mutants. In contrast, the abundance of alternative oxidase was significantly enhanced. We propose that SLO2 is required for carbon energy balance in Arabidopsis by maintaining the abundance and/or activity of complexes I, III, and IV of the mitochondrial electron transport chain.

Collaboration


Dive into the Mizuki Takenaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge