Mo Hong
Dalian Institute of Chemical Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mo Hong.
Journal of Lipid Research | 2013
Zhong-Ze Fang; Rong-Rong He; Yun-Feng Cao; Naoki Tanaka; Changtao Jiang; Kristopher W. Krausz; Yunpeng Qi; Pei-Pei Dong; Chun-Zhi Ai; Xiao-Yu Sun; Mo Hong; Guang-Bo Ge; Frank J. Gonzalez; Xiaochi Ma; Hong-Zhi Sun
Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.
Phytotherapy Research | 2013
Hong-Zhi Sun; Zhong-Ze Fang; Yun-Feng Cao; Xiao-Yu Sun; Mo Hong
Evodiamine is the main active alkaloid of Evodia rutaecarpa (E. rutaecarpa) and has been demonstrated to exhibit many pharmacological activities including vasorelaxation, uterotonic action, anoxia and control of body temperature. The present study focused on the metabolism of evodiamine. Human and phenobarbital‐induced rat liver microsomal incubation of evodiamine in the presence of NADPH resulted in the formation of five major metabolites (M‐1, M‐2, M‐3, M‐4, M‐5). Four metabolites (M‐1, M‐2, M‐3 and M‐5) were identified to mono‐hydroxylated evodiamine and one metabolite (M‐4) was identified to be N‐demethylated evodiamine. CYP3A4, CYP2C9 and CYP1A2 were identified to be the main CYP isoforms involved in the metabolism of evodiamine in human liver microsomes. Finding new metabolites can help us decipher novel substance basis of efficiency and toxicity. Elucidation of drug metabolizing enzymes will facilitate explaining the individual difference for response to the same drugs or herbs and the potential drug–drug interaction or herb–drug interaction. Taken together, these results are of significance for better understanding the pharmacokinetic behaviour of evodiamine and helpful for clinical application of evodiamine and E. rutaecarpa. Copyright
Chemosphere | 2013
Hua-Mao Jiang; Zhong-Ze Fang; Yun-Feng Cao; Cui-Min Hu; Xiao-Yu Sun; Mo Hong; Ling Yang; Guang-Bo Ge; Yong Liu; Yan-Yan Zhang; Qiang Dong; Ren-Jie Liu
Bisphenol A (BPA), the important endocrine-disrupting chemical (EDC), has been reported to be able to induce various toxicity. The present study aims to understand the toxicity behavior of bisphenol A through evaluating the inhibition profile of bisphenol A towards UDP-glucuronosyltransferase (UGT) isoforms. In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as probe reaction for all the tested UGT isoforms. The results showed that bisphenol A exerted stronger inhibition towards UGT2B isoforms than UGT1A isoforms. Furthermore, the inhibition kinetic type and parameters (K(i)) were determined for the inhibition of bisphenol A towards UGT2B4, 2B7, 2B15, and 2B17. Bisphenol A exhibited the competitive inhibition towards UGT2B4, and noncompetitive inhibition towards UGT2B7, 2B15 and 2B17. The inhibition kinetic parameters (K(i)) were calculated to be 1.1, 32.6, 5.6, and 19.9 μM for UGT2B4, 2B7, 2B15 and 2B17, respectively. In combination with the in vivo concentration of bisphenol A, the elevation of exposure dose was predicted to increase by 29.1%, 1%, 5.7%, and 1.6% for UGT2B4, 2B7, 2B15, and 2B17, indicating the high influence of bisphenol A towards the in vivo UGT2B isofroms-mediated metabolism of xenobiotics and endogenous substances. All these data provide the supporting information for deeper understanding of toxicology of bisphenol A.
Phytotherapy Research | 2013
Bin Guo; Xu-Ran Fan; Zhong-Ze Fang; Yun-Feng Cao; Cui-Min Hu; Julin Yang; Yan-Yan Zhang; Rong-Rong He; Xu Zhu; Zhen-Wen Yu; Xiao-Yu Sun; Mo Hong; Lu Yang
The detailed mechanisms on licorice–drug interaction remain to be unclear. The aim of the present study is to investigate the inhibition of important UGT isoforms by two important ingredients of licorice, liquiritin, and liquiritigenin. The results showed that liquiritigenin exhibited stronger inhibition towards all the tested UGT isoforms than liquiritin. Data fitting using Dixon and Lineweaver–Burk plots demonstrated the competitive inhibition of liquiritigenin towards UGT1A1 and UGT1A9‐mediated 4‐MU glucuronidation reaction. The inhibition kinetic parameters (Ki) were calculated to be 9.1 and 3.2 μM for UGT1A1 and UGT1A9, respectively. Substrate‐dependent inhibition behaviour was also observed for UGT1A1 in the present study. All these results will be helpful for understanding the deep mechanism of licorice–drug interaction. However, when translating these in vitro parameters into in vivo situations, more complex factors should be considered, such as substrate‐dependent inhibition of UGT isoforms, the contribution of UGT1A1 and UGT1A9 towards the metabolism of drugs, and many factors affecting the abundance of ingredients in the licorice. Copyright
Xenobiotica | 2015
Xin Gao; Hengyan Qu; Chun-Zhi Ai; Yun-Feng Cao; Ting Huang; Jian-Xing Chen; Jia Zeng; Xiao-Yu Sun; Mo Hong; Frank J. Gonzalez; Zeyuan Liu; Zhong-Ze Fang
Abstract 1. Endogenous compounds have been reported to be the regulators of UDP-glucuronosyltransferases (UGTs) isoforms. This study aims to investigate the regulatory effects of the activity of UGT isoforms by two important lipid components phosphatidylcholine (PC) and lysophosphatidylcholines (LPC) using in vitro incubation system. 2. UGTs supersomes-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as the probe reaction to evaluate the inhibition of compounds towards UGT isoforms except UGT1A4, and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation reaction was utilized to phenotype the activity of UGT1A4. 3. About 50 μM of LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0 exhibited inhibition towards more than 90% activity of UGT isoforms, and other LPC and PC components showed negligible inhibitory potential towards all the UGT isoforms. UGT1A6 and UGT1A8 were identified to be the most sensitive UGT isoforms susceptible for the inhibition by LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0, indicating the strong influence of these LPC and PC components towards UGT1A6 and UGT1A8-catalyzed metabolic reaction when the concentrations of these components increased.
Phytotherapy Research | 2014
Guang-You Ma; Yun-Feng Cao; Cui-Min Hu; Zhong-Ze Fang; Xiao-Yu Sun; Mo Hong; Zhitu Zhu
Scutellarin is an important bioactive flavonoid extracted from Erigeron breviscapus (Vant.) Hand‐Mazz, and scutellarein is the corresponding aglycone of scutellarin. The present study aims to compare the inhibition potential of scutellarin and scutellarein towards several important UDP‐glucuronosyltransferase (UGT) isoforms, including UGT1A1, UGT1A6, UGT1A9 and UGT2B7. It was demonstrated that scutellarein exerted stronger inhibition towards the tested UGT isoforms than scutellarin. Furthermore, the inhibition kinetic type and parameters (Ki) were determined for the scutellareins inhibition towards these UGT isoforms. Competitive inhibition of scutellarein towards all these UGT isoforms was demonstrated, and the Ki values were calculated to be 0.02, 5.0, 5.8 and 35.9 μM for UGT1A1, 1A6, 1A9 and 2B7, respectively. Using in vivo maximum plasma concentration of scutellarein in rat, the in vitro–in vivo extrapolation was performed to predict in vivo situation, indicating the most possible in vivo adverse effects due to the inhibition of scutellarein towards UGT1A1. All these results remind us to monitor the utilization of scutellarin and scutellarein, and the herbs containing these two components. Copyright
Fitoterapia | 2013
Hang Lu; Zhong-Ze Fang; Yun-Feng Cao; Cui-Min Hu; Mo Hong; Xiao-Yu Sun; Hua Li; Yan Liu; Xiaoguang Fu; Hong-Zhi Sun
Isoliquiritigenin, a herbal ingredient with chalcone structure, has been speculated to be able to inhibit one of the most drug-metabolizing enzymes (DMEs) UDP-glucuronosyltransferase (UGT). Therefore, the aim of the present study was to investigate the inhibition of isoliquiritigenin towards important UGT isoforms in the liver and intestine, including UGT1A1, 1A3, 1A6, 1A7, 1A8, 1A9 and 1A10. The recombinant UGT-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as probe reactions. The results showed that 100μM of isoliquiritigenin inhibited the activity of UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 by 95.2%, 76.1%, 78.9%, 87.2%, 67.2%, 94.8%, and 91.7%, respectively. The data fitting using Dixon plot and Lineweaver-Burk plot showed that the inhibition of UGT1A1, UGT1A9 and UGT1A10 by isoliquiritigenin was all best fit to the competitive inhibition, and the second plot using the slopes from the Lineweaver-Burk plot versus isoliquiritigenin concentrations was used to calculate the inhibition kinetic parameter (K(i)) to be 0.7μM, 0.3μM, and 18.3μM for UGT1A1, UGT1A9, and UGT1A10, respectively. All these results indicated the risk of clinical application of isoliquiritigenin on the drug-drug interaction and other possible diseases induced by the inhibition of isoliquiritigenin towards these UGT isoforms.
Evidence-based Complementary and Alternative Medicine | 2014
Li-Peng Jiang; Jin Zhao; Yun-Feng Cao; Mo Hong; Dong-Xue Sun; Xiao-Yu Sun; Jun Yin; Zhitu Zhu; Zhong-Ze Fang
The mechanism of shengmai injection- (SMI-) related drug-drug interaction remains unclear. Evaluation of the inhibition potential of SMIs ingredients towards UDP-glucuronosyltransferases (UGTs) activity will provide a new insight to understand SMI-related drug-drug interaction. In vitro incubation system to model UGT reaction was used. Recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation reactions were employed to phenotype the inhibition profile of maidongs components towards the activity of UGT isoforms. Different inhibition potential of maidongs components towards various UGT isoforms was observed. Based on the inhibition kinetic investigation results, ophiopogonin D (OD) noncompetitively inhibited UGT1A6 and competitively inhibited UGT1A8, ophiopogonin D′ (OD′) noncompetitively inhibited UGT1A6 and UGT1A10, and ruscorectal (RU) exhibited competitive inhibition towards UGT1A4. The inhibition kinetic parameters were calculated to be 20.6, 40.1, 5.3, 9.0, and 0.02 μM, respectively. In combination with our previous results obtained for the inhibition of UGT isoforms by ginsenosides and wuweizi components, the important SMI ingredients exhibiting strong inhibition towards UGT isoforms were highlighted. All the results obtained in the present study provide a new insight to understand SMI-related drug-drug interaction.
Xenobiotica | 2018
Zuo Du; Guang Wang; Yun-Feng Cao; Cui-Min Hu; Kun Yang; Yong-Zhe Liu; Chun-Ze Zhang; Wei-Hua Zhang; Zhi-Tu Zhu; Hong-Zhi Sun; Xiao-Yu Sun; Mo Hong; Zhong-Ze Fang
Abstract 1. Everolimus is an inhibitor of mammalian target of rapamycin (mTOR) and has been clinically utilized to prevent the rejection of organ transplants. This study aims to determine the inhibition of everolimus on the activity of phase-II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs). 2. The results showed that 100 μM of everolimus exerted more than 80% inhibition toward UGT1A1, UGT-1A3 and UGT-2B7. UGT1A3 and UGT2B7 were selected to elucidate the inhibition mechanism, and in silico docking showed that hydrogen bonds and hydrophobic interactions mainly contributed to the strong binding of everolimus toward the activity cavity of UGT1A3 and UGT2B7. Inhibition kinetic-type analysis using Lineweaver–Burk plot showed competitive inhibition toward all these UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 2.3, 0.07 and 4.4 μM for the inhibition of everolimus toward UGT1A1, UGT-1A3 and UGT-2B7, respectively. 3. In vitro–in vivo extrapolation (IVIVE) showed that [I]/Ki value was calculated to be 0.004, 0.14 and 0.002 for UGT1A1, UGT-1A3 and UGT-2B7, respectively. Therefore, high DDI potential existed between everolimus and clinical drugs mainly undergoing UGT1A3-catalyzed glucuronidation.
Iubmb Life | 2018
Qianru Bai; Baohua Peng; Xue Wu; Yun-Feng Cao; Xiao-Yu Sun; Mo Hong; Rongmei Na; Baiting Liu; Qianxiao Li; Zhu Li; Weiyi Fang; Ning Zhu; Chengguo Zong; Qin Yu
Hypertension is an increasingly serious public‐health challenge worldwide. The traditional blood pressure measurement method could easily and reliably detect blood pressure. However, the delayed symptom onset may influence the screening of essential hypertension (EH). In addition, EH is significantly associated to cardiovascular disease, stroke and kidney disease. Hence, it is urgent to define associated biomarkers with early diagnosis potential for EH. A dried blood spot method integrated with direct infusion mass spectrometry (MS) metabolomic analysis was applied for the detection of metabolites toward 87 EH patients and 91 healthy controls (HC). Multiple algorithms were run on training set (62 EH and 64 HC) for selecting differential metabolites as potential biomarkers. A test set (25 EH and 27 HC) was used to verify and evaluate selected potential biomarkers. A novel blood biomarker model based on Gly, Orn, C10, Orn/Cit, Phe/Tyr, and C5‐OH/C8 exhibited potential to differentiate EH patients from HC individuals, with a sensitivity of 0.8400 and a specificity of 0.8889 in test set. The metabolomic analysis of EH is beneficial to the definition of disease‐associated biomarkers and the development of new diagnostic approaches.