Xiao-Yu Sun
Dalian Institute of Chemical Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiao-Yu Sun.
Journal of Lipid Research | 2013
Zhong-Ze Fang; Rong-Rong He; Yun-Feng Cao; Naoki Tanaka; Changtao Jiang; Kristopher W. Krausz; Yunpeng Qi; Pei-Pei Dong; Chun-Zhi Ai; Xiao-Yu Sun; Mo Hong; Guang-Bo Ge; Frank J. Gonzalez; Xiaochi Ma; Hong-Zhi Sun
Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.
Phytotherapy Research | 2013
Hong-Zhi Sun; Zhong-Ze Fang; Yun-Feng Cao; Xiao-Yu Sun; Mo Hong
Evodiamine is the main active alkaloid of Evodia rutaecarpa (E. rutaecarpa) and has been demonstrated to exhibit many pharmacological activities including vasorelaxation, uterotonic action, anoxia and control of body temperature. The present study focused on the metabolism of evodiamine. Human and phenobarbital‐induced rat liver microsomal incubation of evodiamine in the presence of NADPH resulted in the formation of five major metabolites (M‐1, M‐2, M‐3, M‐4, M‐5). Four metabolites (M‐1, M‐2, M‐3 and M‐5) were identified to mono‐hydroxylated evodiamine and one metabolite (M‐4) was identified to be N‐demethylated evodiamine. CYP3A4, CYP2C9 and CYP1A2 were identified to be the main CYP isoforms involved in the metabolism of evodiamine in human liver microsomes. Finding new metabolites can help us decipher novel substance basis of efficiency and toxicity. Elucidation of drug metabolizing enzymes will facilitate explaining the individual difference for response to the same drugs or herbs and the potential drug–drug interaction or herb–drug interaction. Taken together, these results are of significance for better understanding the pharmacokinetic behaviour of evodiamine and helpful for clinical application of evodiamine and E. rutaecarpa. Copyright
Chemosphere | 2013
Hua-Mao Jiang; Zhong-Ze Fang; Yun-Feng Cao; Cui-Min Hu; Xiao-Yu Sun; Mo Hong; Ling Yang; Guang-Bo Ge; Yong Liu; Yan-Yan Zhang; Qiang Dong; Ren-Jie Liu
Bisphenol A (BPA), the important endocrine-disrupting chemical (EDC), has been reported to be able to induce various toxicity. The present study aims to understand the toxicity behavior of bisphenol A through evaluating the inhibition profile of bisphenol A towards UDP-glucuronosyltransferase (UGT) isoforms. In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as probe reaction for all the tested UGT isoforms. The results showed that bisphenol A exerted stronger inhibition towards UGT2B isoforms than UGT1A isoforms. Furthermore, the inhibition kinetic type and parameters (K(i)) were determined for the inhibition of bisphenol A towards UGT2B4, 2B7, 2B15, and 2B17. Bisphenol A exhibited the competitive inhibition towards UGT2B4, and noncompetitive inhibition towards UGT2B7, 2B15 and 2B17. The inhibition kinetic parameters (K(i)) were calculated to be 1.1, 32.6, 5.6, and 19.9 μM for UGT2B4, 2B7, 2B15 and 2B17, respectively. In combination with the in vivo concentration of bisphenol A, the elevation of exposure dose was predicted to increase by 29.1%, 1%, 5.7%, and 1.6% for UGT2B4, 2B7, 2B15, and 2B17, indicating the high influence of bisphenol A towards the in vivo UGT2B isofroms-mediated metabolism of xenobiotics and endogenous substances. All these data provide the supporting information for deeper understanding of toxicology of bisphenol A.
Phytotherapy Research | 2013
Bin Guo; Xu-Ran Fan; Zhong-Ze Fang; Yun-Feng Cao; Cui-Min Hu; Julin Yang; Yan-Yan Zhang; Rong-Rong He; Xu Zhu; Zhen-Wen Yu; Xiao-Yu Sun; Mo Hong; Lu Yang
The detailed mechanisms on licorice–drug interaction remain to be unclear. The aim of the present study is to investigate the inhibition of important UGT isoforms by two important ingredients of licorice, liquiritin, and liquiritigenin. The results showed that liquiritigenin exhibited stronger inhibition towards all the tested UGT isoforms than liquiritin. Data fitting using Dixon and Lineweaver–Burk plots demonstrated the competitive inhibition of liquiritigenin towards UGT1A1 and UGT1A9‐mediated 4‐MU glucuronidation reaction. The inhibition kinetic parameters (Ki) were calculated to be 9.1 and 3.2 μM for UGT1A1 and UGT1A9, respectively. Substrate‐dependent inhibition behaviour was also observed for UGT1A1 in the present study. All these results will be helpful for understanding the deep mechanism of licorice–drug interaction. However, when translating these in vitro parameters into in vivo situations, more complex factors should be considered, such as substrate‐dependent inhibition of UGT isoforms, the contribution of UGT1A1 and UGT1A9 towards the metabolism of drugs, and many factors affecting the abundance of ingredients in the licorice. Copyright
Xenobiotica | 2015
Xin Gao; Hengyan Qu; Chun-Zhi Ai; Yun-Feng Cao; Ting Huang; Jian-Xing Chen; Jia Zeng; Xiao-Yu Sun; Mo Hong; Frank J. Gonzalez; Zeyuan Liu; Zhong-Ze Fang
Abstract 1. Endogenous compounds have been reported to be the regulators of UDP-glucuronosyltransferases (UGTs) isoforms. This study aims to investigate the regulatory effects of the activity of UGT isoforms by two important lipid components phosphatidylcholine (PC) and lysophosphatidylcholines (LPC) using in vitro incubation system. 2. UGTs supersomes-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as the probe reaction to evaluate the inhibition of compounds towards UGT isoforms except UGT1A4, and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation reaction was utilized to phenotype the activity of UGT1A4. 3. About 50 μM of LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0 exhibited inhibition towards more than 90% activity of UGT isoforms, and other LPC and PC components showed negligible inhibitory potential towards all the UGT isoforms. UGT1A6 and UGT1A8 were identified to be the most sensitive UGT isoforms susceptible for the inhibition by LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0, indicating the strong influence of these LPC and PC components towards UGT1A6 and UGT1A8-catalyzed metabolic reaction when the concentrations of these components increased.
Phytotherapy Research | 2014
Guang-You Ma; Yun-Feng Cao; Cui-Min Hu; Zhong-Ze Fang; Xiao-Yu Sun; Mo Hong; Zhitu Zhu
Scutellarin is an important bioactive flavonoid extracted from Erigeron breviscapus (Vant.) Hand‐Mazz, and scutellarein is the corresponding aglycone of scutellarin. The present study aims to compare the inhibition potential of scutellarin and scutellarein towards several important UDP‐glucuronosyltransferase (UGT) isoforms, including UGT1A1, UGT1A6, UGT1A9 and UGT2B7. It was demonstrated that scutellarein exerted stronger inhibition towards the tested UGT isoforms than scutellarin. Furthermore, the inhibition kinetic type and parameters (Ki) were determined for the scutellareins inhibition towards these UGT isoforms. Competitive inhibition of scutellarein towards all these UGT isoforms was demonstrated, and the Ki values were calculated to be 0.02, 5.0, 5.8 and 35.9 μM for UGT1A1, 1A6, 1A9 and 2B7, respectively. Using in vivo maximum plasma concentration of scutellarein in rat, the in vitro–in vivo extrapolation was performed to predict in vivo situation, indicating the most possible in vivo adverse effects due to the inhibition of scutellarein towards UGT1A1. All these results remind us to monitor the utilization of scutellarin and scutellarein, and the herbs containing these two components. Copyright
Fitoterapia | 2013
Hang Lu; Zhong-Ze Fang; Yun-Feng Cao; Cui-Min Hu; Mo Hong; Xiao-Yu Sun; Hua Li; Yan Liu; Xiaoguang Fu; Hong-Zhi Sun
Isoliquiritigenin, a herbal ingredient with chalcone structure, has been speculated to be able to inhibit one of the most drug-metabolizing enzymes (DMEs) UDP-glucuronosyltransferase (UGT). Therefore, the aim of the present study was to investigate the inhibition of isoliquiritigenin towards important UGT isoforms in the liver and intestine, including UGT1A1, 1A3, 1A6, 1A7, 1A8, 1A9 and 1A10. The recombinant UGT-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as probe reactions. The results showed that 100μM of isoliquiritigenin inhibited the activity of UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 by 95.2%, 76.1%, 78.9%, 87.2%, 67.2%, 94.8%, and 91.7%, respectively. The data fitting using Dixon plot and Lineweaver-Burk plot showed that the inhibition of UGT1A1, UGT1A9 and UGT1A10 by isoliquiritigenin was all best fit to the competitive inhibition, and the second plot using the slopes from the Lineweaver-Burk plot versus isoliquiritigenin concentrations was used to calculate the inhibition kinetic parameter (K(i)) to be 0.7μM, 0.3μM, and 18.3μM for UGT1A1, UGT1A9, and UGT1A10, respectively. All these results indicated the risk of clinical application of isoliquiritigenin on the drug-drug interaction and other possible diseases induced by the inhibition of isoliquiritigenin towards these UGT isoforms.
OncoTargets and Therapy | 2016
Qingjun Wang; Tao Sun; Yun-Feng Cao; Peng Gao; Jun Dong; Yanhua Fang; Zhong-Ze Fang; Xiao-Yu Sun; Zhitu Zhu
Objective Breast cancer (BC) is still a lethal threat to women worldwide. An accurate screening and diagnosis strategy performed in an easy-to-operate manner is highly warranted in clinical perspective. Besides the routinely focused protein markers, blood is full of small molecular metabolites with diverse structures and properties. This study aimed to screen metabolite markers with BC diagnosis potentials. Methods A dried blood spot-based direct infusion mass spectrometry (MS) metabolomic analysis was conducted for BC and non-BC differentiation. The targeted analytes included 23 amino acids and 26 acylcarnitines. Results Multivariate analysis screened out 21 BC-related metabolites in the blood. Regression analysis generated a diagnosis model consisting of parameters Pip, Asn, Pro, C14:1/C16, Phe/Tyr, and Gly/Ala. Tested with another set of BC and non-BC samples, this model showed a sensitivity of 92.2% and a specificity of 84.4%. Compared to the routinely used protein markers, this model exhibited distinct advantage with its higher sensitivity. Conclusion Blood metabolites screening is a more plausible approach for BC detection. Furthermore, this direct MS analysis could be finished within few minutes, which means that its throughput is higher than the currently used imaging techniques.
Phytotherapy Research | 2015
Jin-Hui Song; Li Cui; Li-Bin An; Wen-Tao Li; Zhong-Ze Fang; Yan-Yan Zhang; Pei-Pei Dong; Xue Wu; Lixuan Wang; Frank J. Gonzalez; Xiao-Yu Sun; De-Wei Zhao
Structure–activity relationship for the inhibition of Schisandra chinensiss ingredients toward (Uridine‐Diphosphate) UDP‐glucuronosyltransferases (UGTs) activity was performed in the present study. In vitro incubation system was employed to screen the inhibition capability of S. chinensiss ingredients, and in silico molecular docking method was carried out to explain possible mechanisms. At 100 μM of compounds, the activity of UGTs was inhibited by less than 90% by schisandrol A, schisandrol B, schisandrin, schisandrin C, schisantherin A, gomisin D, and gomisin G. Schisandrin A exerted strong inhibition toward UGT1A1 and UGT1A3, with the residual activity to be 7.9% and 0% of control activity. Schisanhenol exhibited strong inhibition toward UGT2B7, with the residual activity to be 7.9% of control activity. Gomisin J of 100 μM inhibited 91.8% and 93.1% of activity of UGT1A1 and UGT1A9, respectively. Molecular docking prediction indicated different hydrogen bonds interaction resulted in the different inhibition potential induced by subtle structure alteration among schisandrin A, schisandrin, and schisandrin C toward UGT1A1 and UGT1A3: schisandrin A > schisandrin > schisandrin C. The detailed inhibition kinetic evaluation showed the strong inhibition of gomisin J toward UGT1A9 with the inhibition kinetic parameter (Ki) to be 0.7 μM. Based on the concentrations of gomisin J in the plasma of the rats given with S. chinensis, high herb–drug interaction existed between S. chinensis and drugs mainly undergoing UGT1A9‐mediated metabolism. In conclusion, in silico‐in vitro method was used to give the inhibition information and possible inhibition mechanism for S. chinensiss components toward UGTs, which guide the clinical application of S. chinensis. Copyright
Journal of Clinical Laboratory Analysis | 2016
Zhansheng Hu; Zhitu Zhu; Yun-Feng Cao; Li-Xuan Wang; Xiao-Yu Sun; Jun Dong; Zhong-Ze Fang; Yanhua Fang; Xiaoxue xu; Peng Gao; Sun Hongzhi
Cerebral infarction (CI) and intracerebral hemorrhage are lethal cerebrovascular diseases, sometimes sharing similar clinical manifestations but with distinct therapeutic strategies. Delayed treatment usually resulted in poor prognosis. A timely diagnosis report is highly warranted especially in emergency. One hundred twenty‐nine CI patients, 73 intracerebral hemorrhage (ICH) patients, and 98 controls were enrolled in this study. A direct injection mass spectrometry metabolomics approach was adopted using dried blood spot samples. This targeted metabolomics analysis focused on absolute quantitation of 23 amino acids, 26 carnitine/carnitine esters, and 22 calculated ratios parameters. Compared to the normal control group, CI and ICH showed distinct metabolite changes, respectively. For stroke differentiation, Tyr, C5‐OH/C0, Cit, Asn, Pro, Val, Arg/Orn, Leu, and Val/Phe were elevated in the CI group. On the contrary, C5:1, Phe/Tyr, (C0 + C2 + C3 + C16 + C18:1)/Cit, and Met/Leu were of lower levels in the CI group. Using regression model based on some of the above‐mentioned parameters, 79.07% of stroke patients from a new set could be definitely confirmed. This study proved the targeted metabolomics analysis was a promising tool for rapid and timely stroke differentiation.