Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mo-Xian Chen is active.

Publication


Featured researches published by Mo-Xian Chen.


PLOS Genetics | 2015

Unsaturation of Very-Long-Chain Ceramides Protects Plant from Hypoxia-Induced Damages by Modulating Ethylene Signaling in Arabidopsis

Li-Juan Xie; Qin-Fang Chen; Mo-Xian Chen; Lu-Jun Yu; Li Huang; Liang Chen; Feng-Zhu Wang; Fan-Nv Xia; Tian-Ren Zhu; Jian-Xin Wu; Jian Yin; Bin Liao; Jianxin Shi; Jianhua Zhang; Asaph Aharoni; Nan Yao; Wensheng Shu; Shi Xiao

Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that hypoxia caused a significant increase in total amounts of phosphatidylserine, phosphatidic acid and oxidized lipids, but a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Particularly, significant gains in the polyunsaturated species of PC, PE and phosphatidylinositol, and losses in their saturated and mono-unsaturated species were evident during hypoxia. Moreover, hypoxia led to a remarkable elevation of ceramides and hydroxyceramides. Disruption of ceramide synthases LOH1, LOH2 and LOH3 enhanced plant sensitivity to dark submergence, but displayed more resistance to submergence under light than wild type. Consistently, levels of unsaturated very-long-chain (VLC) ceramide species (22:1, 24:1 and 26:1) predominantly declined in the loh1, loh2 and loh3 mutants under dark submergence. In contrast, significant reduction of VLC ceramides in the loh1-1 loh3-1 knockdown double mutant and lacking of VLC unsaturated ceramides in the ads2 mutants impaired plant tolerance to both dark and light submergences. Evidence that C24:1-ceramide interacted with recombinant CTR1 protein and inhibited its kinase activity in vitro, enhanced ER-to-nucleus translocation of EIN2-GFP and stabilization of EIN3-GFP in vivo, suggests a role of ceramides in modulating CTR1-mediated ethylene signaling. The dark submergence-sensitive phenotypes of loh mutants were rescued by a ctr1-1 mutation. Thus, our findings demonstrate that unsaturation of VLC ceramides is a protective strategy for hypoxic tolerance in Arabidopsis.


Plant Journal | 2017

Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings

Fu-Yuan Zhu; Mo-Xian Chen; Nenghui Ye; Lu Shi; Kai-Long Ma; Jing-Fang Yang; Yun-Ying Cao; Youjun Zhang; Takuya Yoshida; Alisdair R. Fernie; Guang-Yi Fan; Bo Wen; Ruo Zhou; Tie-Yuan Liu; Tao Fan; Bei Gao; Di Zhang; Ge-Fei Hao; Shi Xiao; Ying-Gao Liu; Jianhua Zhang

In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment.


Molecular Plant | 2015

Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance

Qin-Fang Chen; Le Xu; Wei-Juan Tan; Liang Chen; Hua Qi; Li-Juan Xie; Mo-Xian Chen; Bin-Yi Liu; Lu-Jun Yu; Nan Yao; Jianhua Zhang; Wensheng Shu; Shi Xiao

In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants, exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons compared with the wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than the wild type, and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in the wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in the freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG.


Journal of Experimental Botany | 2015

AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment

Rui Liu; Ying-Gao Liu; Nenghui Ye; Guohui Zhu; Mo-Xian Chen; Liguo Jia; Yiji Xia; Lu Shi; Wensuo Jia; Jianhua Zhang

Highlight AtDsPTP1 was found to regulate ABA accumulation and act as a negative regulator in osmotic stress signalling during Arabidospsis seed germination and seedling establishment.


Scientific Reports | 2017

Desiccation tolerance in bryophytes: The dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyte Bryum argenteum

Bei Gao; Xiaoshuang Li; Daoyuan Zhang; Yuqing Liang; Honglan Yang; Mo-Xian Chen; Yuanming Zhang; Jianhua Zhang; Andrew J. Wood

The desiccation tolerant bryophyte Bryum argenteum is an important component of desert biological soil crusts (BSCs) and is emerging as a model system for studying vegetative desiccation tolerance. Here we present and analyze the hydration-dehydration-rehydration transcriptomes in B. argenteum to establish a desiccation-tolerance transcriptomic atlas. B. argenteum gametophores representing five different hydration stages (hydrated (H0), dehydrated for 2 h (D2), 24 h (D24), then rehydrated for 2 h (R2) and 48 h (R48)), were sampled for transcriptome analyses. Illumina high throughput RNA-Seq technology was employed and generated more than 488.46 million reads. An in-house de novo transcriptome assembly optimization pipeline based on Trinity assembler was developed to obtain a reference Hydration-Dehydration-Rehydration (H-D-R) transcriptome comprising of 76,206 transcripts, with an N50 of 2,016 bp and average length of 1,222 bp. Comprehensive transcription factor (TF) annotation discovered 978 TFs in 62 families, among which 404 TFs within 40 families were differentially expressed upon dehydration-rehydration. Pfam term enrichment analysis revealed 172 protein families/domains were significantly associated with the H-D-R cycle and confirmed early rehydration (i.e. the R2 stage) as exhibiting the maximum stress-induced changes in gene expression.


Frontiers in Plant Science | 2016

SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling

Fu-Yuan Zhu; Mo-Xian Chen; Yu-Wen Su; Xuezhong Xu; Nenghui Ye; Yun-Ying Cao; Sheng Lin; Tie-Yuan Liu; Haoxuan Li; Guan-Qun Wang; Yu Jin; Yong-Hai Gu; Wai-Lung Chan; Clive Lo; Xinxiang Peng; Guohui Zhu; Jianhua Zhang

Modern rice cultivars have large panicle but their yield potential is often not fully achieved due to poor grain-filling of late-flowering inferior spikelets (IS). Our earlier work suggested a broad transcriptional reprogramming during grain filling and showed a difference in gene expression between IS and earlier-flowering superior spikelets (SS). However, the links between the abundances of transcripts and their corresponding proteins are unclear. In this study, a SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) -based quantitative proteomic analysis has been applied to investigate SS and IS proteomes. A total of 304 proteins of widely differing functionality were observed to be differentially expressed between IS and SS. Detailed gene ontology analysis indicated that several biological processes including photosynthesis, protein metabolism, and energy metabolism are differentially regulated. Further correlation analysis revealed that abundances of most of the differentially expressed proteins are not correlated to the respective transcript levels, indicating that an extra layer of gene regulation which may exist during rice grain filling. Our findings raised an intriguing possibility that these candidate proteins may be crucial in determining the poor grain-filling of IS. Therefore, we hypothesize that the regulation of proteome changes not only occurs at the transcriptional, but also at the post-transcriptional level, during grain filling in rice.


Frontiers in Plant Science | 2017

OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice

Feng-Zhu Wang; Mo-Xian Chen; Lu-Jun Yu; Li-Juan Xie; Li-Bing Yuan; Hua Qi; Ming Xiao; Wuxiu Guo; Zhe Chen; Keke Yi; Jianhua Zhang; Rongliang Qiu; Wensheng Shu; Shi Xiao; Qin-Fang Chen

Bioaccumulation of arsenic (As) in rice (Oryza sativa) increases human exposure to this toxic, carcinogenic element. Recent studies identified several As transporters, but the regulation of these transporters remains unclear. Here, we show that the rice R2R3 MYB transcription factor OsARM1 (ARSENITE-RESPONSIVE MYB1) regulates As-associated transporters genes. Treatment with As(III) induced OsARM1 transcript accumulation and an OsARM1-GFP fusion localized to the nucleus. Histochemical analysis of OsARM1pro::GUS lines indicated that OsARM1 was expressed in the phloem of vascular bundles in basal and upper nodes. Knockout of OsARM1 (OsARM1-KO CRISPR/Cas9-generated mutants) improved tolerance to As(III) and overexpression of OsARM1 (OsARM1-OE lines) increased sensitivity to As(III). Measurement of As in As(III)-treated plants showed that under low As(III) conditions (2 μM), more As was transported from the roots to the shoots in OsARM1-KOs. By contrast, more As accumulated in the roots in OsARM1-OEs in response to high As(III) exposure (25 μM). In particular, the As(III) levels in node I were significantly higher in OsARM1-KOs, but significantly lower in OsARM1-OEs, compared to wild-type plants, implying that OsARM1 is important for the regulation of root-to-shoot translocation of As. Moreover, OsLsi1, OsLsi2, and OsLsi6, which encode key As transporters, were significantly downregulated in OsARM1-OEs and upregulated in OsARM1-KOs compared to wild type. Chromatin immunoprecipitation-quantitative PCR of OsARM1-OEs indicated that OsARM1 binds to the conserved MYB-binding sites in the promoters or genomic regions of OsLsi1, OsLsi2, and OsLsi6 in rice. Our findings suggest that the OsARM1 transcription factor has essential functions in regulating As uptake and root-to-shoot translocation in rice.


Plant Journal | 2018

Natural variation in the promoter of rice calcineurin B‐like protein10 (OsCBL10) affects flooding tolerance during seed germination among rice subspecies

Nenghui Ye; Feng-Zhu Wang; Lu Shi; Mo-Xian Chen; Yun-Ying Cao; Fu-Yuan Zhu; Yi-Zhen Wu; Li-Juan Xie; Tie-Yuan Liu; Ze-Zhuo Su; Shi Xiao; Hao Zhang; Jianchang Yang; Hai-Yong Gu; Xuan-Xuan Hou; Qi-Juan Hu; Hui-Juan Yi; Chang-Xiang Zhu; Jianhua Zhang; Ying-Gao Liu

Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding-intolerant) and lowland (Low88, flooding-tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding-tolerant type (T-type) or a flooding-intolerant type (I-type). The OsCBL10 T-type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I-type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding-tolerant rice cultivars containing the OsCBL10 T-type promoter have shown lower Ca2+ flow and higher α-amylase activities in comparison to those in flooding-intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild-type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.


Frontiers in Plant Science | 2017

A Phylogenetically Informed Comparison of GH1 Hydrolases between Arabidopsis and Rice Response to Stressors

Yun-Ying Cao; Jing-Fang Yang; Tie-Yuan Liu; Zhen-Feng Su; Fu-Yuan Zhu; Mo-Xian Chen; Tao Fan; Nenghui Ye; Zhen Feng; Lingjuan Wang; Ge-Fei Hao; Jianhua Zhang; Ying-Gao Liu

Glycoside hydrolases Family 1 (GH1) comprises enzymes that can hydrolyze β-O-glycosidic bond from a carbohydrate moiety. The plant GH1 hydrolases participate in a number of developmental processes and stress responses, including cell wall modification, plant hormone activation or deactivation and herbivore resistance. A large number of members has been observed in this family, suggesting their potential redundant functions in various biological processes. In this study, we have used 304 sequences of plant GH1 hydrolases to study the evolution of this gene family in plant lineage. Gene duplication was found to be a common phenomenon in this gene family. Although many members of GH1 hydrolases showed a high degree of similarity in Arabidopsis and rice, they showed substantial tissue specificity and differential responses to various stress treatments. This differential regulation implies each enzyme may play a distinct role in plants. Furthermore, some of salt-responsive Arabidopsis GH1 hydrolases were selected to test their genetic involvement in salt responses. The knockout mutants of AtBGLU1 and AtBGLU19 were observed to be less-sensitive during NaCl treatment in comparison to the wild type seedlings, indicating their participation in salt stress response. In summary, Arabidopsis and rice GH1 glycoside hydrolases showed distinct features in their evolutionary path, transcriptional regulation and genetic functions.


bioRxiv | 2018

Alternative splicing and translation play important roles in parallel with transcriptional regulation during rice hypoxic germination

Mo-Xian Chen; Fu-Yuan Zhu; Feng-Zhu Wang; Neng-Hui Ye; Bei Gao; Xi Chen; Shan-Shan Zhao; Tao Fan; Yun-Ying Cao; Tie-Yuan Liu; Ze-Zhuo Su; Li-Juan Xie; Qi-Juan Hu; Hui-Jie Wu; Shi Xiao; Jianhua Zhang; Ying-Gao Liu

Post-transcriptional mechanisms, including alternative splicing (AS) and alternative translation initiation (ATI), have been used to explain the protein diversity involved in plant developmental processes and stress responses. Rice germination under hypoxia conditions is a classical model system for the study of low oxygen stress. It is known that there is transcriptional regulation during rice hypoxic germination, but the potential roles of AS and ATI in this process are not well understood. In this study, a proteogenomic approach was used to integrate the data from RNA sequencing, qualitative and quantitative proteomics to discover new players or pathways in the response to hypoxia stress. The improved analytical pipeline of proteogenomics led to the identification of 10,253 intron-containing genes, 1,729 of which were not present in the current annotation. Approximately 1,741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds in comparison to controls. Over 95% of these were not present in the list of differentially expressed genes (DEG). In particular, regulatory pathways such as spliceosome, ribosome, ER protein processing and export, proteasome, phagosome, oxidative phosphorylation and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of traditional transcriptional regulation. Massive AS changes were identified, including the preference usage of certain non-conventional splice sites and enrichment of splicing factors in the DAS datasets. In addition, using self-constructed protein libraries by 6-frame translation, thousands of novel proteins/peptides contributed by ATI were identified. In summary, these results provide deeper insights towards understanding the underlying mechanisms of AS and ATI during rice hypoxic germination.

Collaboration


Dive into the Mo-Xian Chen's collaboration.

Top Co-Authors

Avatar

Jianhua Zhang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Bei Gao

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Tie-Yuan Liu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ying-Gao Liu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Nenghui Ye

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Shi Xiao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fu-Yuan Zhu

Nanjing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Li-Juan Xie

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Qi-Juan Hu

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge