Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nenghui Ye is active.

Publication


Featured researches published by Nenghui Ye.


Journal of Integrative Plant Biology | 2017

WRKY transcription factors in plant responses to stresses

Jingjing Jiang; Shenghui Ma; Nenghui Ye; Ming Jiang; Jiashu Cao; Jianhua Zhang

The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses.


Journal of Experimental Botany | 2012

PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion

Weifeng Xu; Liguo Jia; František Baluška; Guochang Ding; Weiming Shi; Nenghui Ye; Jianhua Zhang

Soil alkalinity is a widespread environmental problem that limits agricultural productivity. The hypothesis that an auxin-regulated proton secretion by plasma membrane H+-ATPase plays an important role in root adaption to alkaline stress was studied. It was found that alkaline stress increased auxin transport and PIN2 (an auxin efflux transporter) abundance in the root tip of wild-type Arabidopsis plants (WT). Compared with WT roots, the pin2 mutant roots exhibited much reduced plasma membrane H+-ATPase activity, root elongation, auxin transport, and proton secretion under alkaline stress. More importantly, roots of the pks5 mutant (PKS5, a protein kinase) lacking PIN2 (a pks5/pin2 double mutant) lost the previous higher proton-secretion capacity and higher elongation rate of primary roots under alkaline stress. By using Arabidopsis natural accessions with a high proton-secretion capacity, it was found that their PIN2 transcription abundance is positively related to the elongation rate of the primary root and proton-secretion capacity under alkaline stress. Taken together, our results confirm that PIN2 is involved in the PKS5-mediated signalling cascade under alkaline-stress and suggest that PIN2 is required for the adaptation of roots to alkaline stress by modulating proton secretion in the root tip to maintain primary root elongation.


PLOS ONE | 2015

A Key ABA Catabolic Gene, OsABA8ox3, Is Involved in Drought Stress Resistance in Rice

Shanlan Cai; Guobin Jiang; Nenghui Ye; Zhizhan Chu; Xuezhong Xu; Jianhua Zhang; Guohui Zhu

Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was promptly induced by rehydration after PEG-mimic dehydration, a tendency opposite to the changes of ABA level. We therefore constructed rice OsABA8ox3 silencing (RNA interference, RNAi) and overexpression plants. There were no obvious phenotype differences between the transgenic seedlings and wild type under normal condition. However, OsABA8ox3 RNAi lines showed significant improvement in drought stress tolerance while the overexpression seedlings were hypersensitive to drought stress when compared with wild type in terms of plant survival rates after 10 days of unwatering. Enzyme activity analysis indicated that OsABA8ox3 RNAi plants had higher superoxide dismutase (SOD) and catalase (CAT) activities and less malondialdehyde (MDA) content than those of wild type when the plants were exposed to dehydration treatment, indicating a better anti-oxidative stress capability and less membrane damage. DNA microarray and real-time PCR analysis under dehydration treatment revealed that expressions of a group of stress/drought-related genes, i.e. LEA genes, were enhanced with higher transcript levels in OsABA8ox3 RNAi transgenic seedlings. We therefore conclude that that OsABA8ox3 gene plays an important role in controlling ABA level and drought stress resistance in rice.


Plant and Cell Physiology | 2015

Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation

Lu Shi; Miaomiao Guo; Nenghui Ye; Ying-Gao Liu; Rui Liu; Yiji Xia; Suxia Cui; Jianhua Zhang

Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress.


Plant and Cell Physiology | 2014

Copper Suppresses Abscisic Acid Catabolism and Catalase Activity, and Inhibits Seed Germination of Rice

Nenghui Ye; Haoxuan Li; Guohui Zhu; Ying-Gao Liu; Rui Liu; Weifeng Xu; Yu Jing; Xinxiang Peng; Jianhua Zhang

Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.


Journal of Photochemistry and Photobiology B-biology | 2015

Distinct photorespiratory reactions are preferentially catalyzed by glutamate:glyoxylate and serine:glyoxylate aminotransferases in rice

Zhisheng Zhang; Xingxue Mao; Juanying Ou; Nenghui Ye; Jianhua Zhang; Xinxiang Peng

The metabolic function of glutamate:glyoxylate aminotransferase (GGAT) and serine:glyoxylate aminotransferase (SGAT) for photorespiration is still not exactly understood so far though it is mostly held that both enzymes may work in parallel in the reaction of glyoxylate to glycine during photorespiration of plants. Here, for the first time, we define the genes encoding GGAT and SGAT and report their biochemical and enzymatic properties in rice plants, in contrast to those from other plant species. Noticeably, GGAT exhibited approximately 18 fold higher catalytic efficiency (Kcat/Km) with glyoxylate and glutamate than SGAT with glyoxylate and serine, and additionally, rice leaves usually contain 3-4times higher abundance of glutamate relative to serine, implicating that GGAT may preferentially utilize glyoxylate to form glycine over SGAT. When SGAT or GGAT activity was regulated by gene transformation or nitrogen deficiency, respectively, it was observed that the glycine content was positively related to GGAT activities, while both serine and glycine contents were negatively related to SGAT activities. The results suggest that GGAT preferentially catalyzes the conversion of glyoxylate into glycine while SGAT is mainly responsible for the transamination reaction of serine to hydroxypyruvate in the photorespiratory pathway of rice.


Plant Journal | 2017

Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings

Fu-Yuan Zhu; Mo-Xian Chen; Nenghui Ye; Lu Shi; Kai-Long Ma; Jing-Fang Yang; Yun-Ying Cao; Youjun Zhang; Takuya Yoshida; Alisdair R. Fernie; Guang-Yi Fan; Bo Wen; Ruo Zhou; Tie-Yuan Liu; Tao Fan; Bei Gao; Di Zhang; Ge-Fei Hao; Shi Xiao; Ying-Gao Liu; Jianhua Zhang

In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment.


Journal of Integrative Plant Biology | 2014

Two hydroxypyruvate reductases encoded by OsHPR1 and OsHPR2 are involved in photorespiratory metabolism in rice.

Nenghui Ye; Guozhen Yang; Yan Chen; Chan Zhang; Jianhua Zhang; Xinxiang Peng

Mutations in the photorespiration pathway display a lethal phenotype in atmospheric air, which can be fully recovered by elevated CO2 . An exception is that mutants of peroxisomal hydroxypyruvate reductase (HPR1) do not have this phenotype, indicating the presence of cytosolic bypass in the photorespiration pathway. In this study, we constructed overexpression of the OsHPR1 gene and RNA interference plants of OsHPR1 and OsHPR2 genes in rice (Oryza sativa L. cv. Zhonghua 11). Results from reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and enzyme assays showed that HPR1 activity changed significantly in corresponding transgenic lines without any effect on HPR2 activity, which is the same for HPR2. However, metabolite analysis and the serine glyoxylate aminotransferase (SGAT) activity assay showed that the metabolite flux of photorespiration was disturbed in RNAi lines of both HPR genes. Furthermore, HPR1 and HPR2 proteins were located to the peroxisome and cytosol, respectively, by transient expression experiment. Double mutant hpr1 × hpr2 was generated by crossing individual mutant of hpr1 and hpr2. The phenotypes of all transgenic lines were determined in ambient air and CO2 -elevated air. The phenotype typical of photorespiration mutants was observed only where activity of both HPR1 and HPR2 were downregulated in the same line. These findings demonstrate that two hydroxypyruvate reductases encoded by OsHPR1 and OsHPR2 are involved in photorespiratory metabolism in rice.


Plant Journal | 2017

Calcium‐dependent protein kinase CPK28 targets the methionine adenosyltransferases for degradation by the 26S proteasome and affects ethylene biosynthesis and lignin deposition in Arabidopsis

Yu Jin; Nenghui Ye; Fu-Yuan Zhu; Haoxuan Li; Juan Wang; Liwen Jiang; Jianhua Zhang

S-adenosylmethionine (AdoMet) is synthesized by methionine adenosyltransferase (MAT), and plays an essential role in ethylene biosynthesis and other methylation reactions. Despite increasing knowledge of MAT regulation at transcriptional levels, how MAT is post-translationally regulated remains unknown in plant cells. Phosphorylation is an important post-translational modification for regulating the activity of enzymes, protein function and signaling transduction. Using molecular and biochemical approaches, we have identified the phosphorylation of MAT proteins by calcium-dependent protein kinase (CPK28). Phenotypically, both MAT2-overexpressing transgenic plants and cpk28 mutants display short hypocotyls and ectopic lignifications. Their shortened hypocotyl phenotypes are caused by ethylene overproduction and rescued by ethylene biosynthesis inhibitor aminoethoxyvinylglycine treatment. Genetic evidence reveals that MAT2 mutation restores the phenotype of ectopic lignification in CPK28-deficient plants. We find that total MAT proteins and AdoMet are increased in cpk28 mutants, but decreased in CPK28-overexpressing seedlings. We also find that MATs in OE::CPK28 are degraded through the 26S proteasome pathway. Our work suggests that CPK28 targets MATs (MAT1, MAT2 and MAT3) for degradation by the 26S proteasome pathway, and thus affects ethylene biosynthesis and lignin deposition in Arabidopsis.


Journal of Experimental Botany | 2015

AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment

Rui Liu; Ying-Gao Liu; Nenghui Ye; Guohui Zhu; Mo-Xian Chen; Liguo Jia; Yiji Xia; Lu Shi; Wensuo Jia; Jianhua Zhang

Highlight AtDsPTP1 was found to regulate ABA accumulation and act as a negative regulator in osmotic stress signalling during Arabidospsis seed germination and seedling establishment.

Collaboration


Dive into the Nenghui Ye's collaboration.

Top Co-Authors

Avatar

Jianhua Zhang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Mo-Xian Chen

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ying-Gao Liu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fu-Yuan Zhu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Lu Shi

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Tie-Yuan Liu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guohui Zhu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinxiang Peng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bei Gao

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge