Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mogens Kilstrup is active.

Publication


Featured researches published by Mogens Kilstrup.


Journal of Bacteriology | 2001

Changes in rRNA levels during stress invalidates results from mRNA blotting: Fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels

Martin C. Hansen; Allan K. Nielsen; Søren Molin; Karin Hammer; Mogens Kilstrup

Regulation of gene expression can be analyzed by a number of different techniques. Some techniques monitor the level of specific mRNA directly, and others monitor indirectly by determining the level of enzymes encoded by the mRNA. Each method has its own inherent way of normalization. When results obtained by these techniques are compared between experiments in which differences in growth rates, strains, or stress treatments occur, the normalization procedure may have a significant impact on the results. In this report we present a solution to the normalization problem in RNA slot blotting experiments, in which mRNA levels routinely are normalized to a fixed amount of extracted total RNA. The cellular levels of specific mRNA species were estimated using a renormalization with the total RNA content per cell. By a combination of fluorescence in situ rRNA hybridization, which estimates the relative level of rRNA per cell, and slot blotting to rRNA probes, which estimates the level of rRNA per extracted total RNA, the amount of RNA per cell was calculated in a series of heat shock experiments with the gram-positive bacterium Lactococcus lactis. It was found that the level of rRNA per cell decreased to 30% in the course of the heat shock. This lowered ribosome level led to a decrease in the total RNA content, resulting in a gradually increasing overestimation of the mRNA levels throughout the experiment. Using renormalized cellular mRNA levels, the HrcA-mediated regulation of the genes in the hrcA-grpE-dnaK operon was analyzed. The hybridization data suggested a complex heat shock regulation indicating that the mRNA levels continued to rise after 30 min, but after renormalization the calculated average cellular levels exhibited a much simpler induction pattern, eventually attaining a moderately increased value.


PLOS ONE | 2014

Identification of Metabolic Pathways Essential for Fitness of Salmonella Typhimurium In Vivo

Lotte Jelsbak; Hassan B. Hartman; Casper Schroll; Jesper T. Rosenkrantz; Sebastien Lemire; Inke Wallrodt; Line Elnif Thomsen; Mark G. Poolman; Mogens Kilstrup; Peter Ruhdal Jensen; John Elmerdahl Olsen

Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut sets) predicted to be required for growth in vivo. We termed such cut sets synthetic auxotrophic pairs. We tested whether these would reveal possible combined targets for new antibiotics by analyzing the performance of selected single and double mutants in systemic mouse infections. One hundred and two cut sets were identified. Sixty-three of these included only pathways encoded by fully annotated genes, and from this sub-set we selected five cut sets involved in amino acid or polyamine biosynthesis. One cut set (asnA/asnB) demonstrated redundancy in vitro and in vivo and showed that asparagine is essential for S. Typhimurium during infection. trpB/trpA as well as single mutants were attenuated for growth in vitro, while only the double mutant was a cut set in vivo, underlining previous observations that tryptophan is essential for successful outcome of infection. speB/speF,speC was not affected in vitro but was attenuated during infection showing that polyamines are essential for virulence apparently in a growth independent manner. The serA/glyA cut-set was found to be growth attenuated as predicted by the model. However, not only the double mutant, but also the glyA mutant, were found to be attenuated for virulence. This adds glycine production or conversion of glycine to THF to the list of essential reactions during infection. One pair (thrC/kbl) showed true redundancy in vitro but not in vivo demonstrating that threonine is available to the bacterium during infection. These data add to the existing knowledge of available nutrients in the intra-host environment, and have identified possible new targets for antibiotics.


PLOS ONE | 2013

The Transcriptional and Gene Regulatory Network of Lactococcus lactis MG1363 during Growth in Milk

Anne de Jong; Morten Ejby Hansen; Oscar P. Kuipers; Mogens Kilstrup; Jan Kok

In the present study we examine the changes in the expression of genes of Lactococcus lactis subspecies cremoris MG1363 during growth in milk. To reveal which specific classes of genes (pathways, operons, regulons, COGs) are important, we performed a transcriptome time series experiment. Global analysis of gene expression over time showed that L. lactis adapted quickly to the environmental changes. Using upstream sequences of genes with correlated gene expression profiles, we uncovered a substantial number of putative DNA binding motifs that may be relevant for L. lactis fermentative growth in milk. All available novel and literature-derived data were integrated into network reconstruction building blocks, which were used to reconstruct and visualize the L. lactis gene regulatory network. This network enables easy mining in the chrono-transcriptomics data. A freely available website at http://milkts.molgenrug.nl gives full access to all transcriptome data, to the reconstructed network and to the individual network building blocks.


Microbiology | 2012

The PurR regulon in Lactococcus lactis - transcriptional regulation of the purine nucleotide metabolism and translational machinery.

Christian Bille Jendresen; Jan Martinussen; Mogens Kilstrup

Purine nucleotides are either synthesized de novo from 5-phosphoribosyl-1-pyrophosphate (PRPP) or salvaged from the environment. In Lactococcus lactis, transcription of the de novo synthesis operons, purCSQLF and purDEK, has genetically been shown to be activated by the PurR protein when bound to a conserved PurBox motif present on the DNA at a fixed distance from the promoter -10 element. PurR contains a PRPP-binding site, and activation occurs when the intracellular PRPP pool is high as a consequence of low exogenous purine nucleotide pools. By an iterative approach of bioinformatics searches and motif optimization, 21 PurR-regulated genes were identified and used in a redefinition of the PurBox consensus sequence. In the process a new motif, the double-PurBox, which is present in a number of promoters and contains two partly overlapping PurBox motifs, was established. Transcriptional fusions were used to analyse wild-type promoters and promoters with inactivating PurBox mutations to confirm the relevance of the PurBox motifs as PurR-binding sites. The promoters of several operons were shown to be devoid of any -35 sequence, and found to be completely dependent on PurR-mediated activation. This suggests that binding of the PurR protein to the PurBox takes over the role of the -35 sequence. The study has expanded the PurR regulon to include promoters in nucleotide metabolism, C(1) compound metabolism, phosphonate transport, pyrophosphatase activity, (p)ppGpp metabolism, and translation-related functions. Of special interest is the presence of PurBox motifs in rrn promoters, suggesting a novel connection between nucleotide availability and the translational machinery.


PLOS Biology | 2015

Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens

Jenna Gallie; Eric Libby; Frederic Bertels; Philippe Remigi; Christian Bille Jendresen; Gayle C. Ferguson; Nicolas Desprat; Marieke F. Buffing; Uwe Sauer; Hubertus J. E. Beaumont; Jan Martinussen; Mogens Kilstrup; Paul B. Rainey

Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution.


Proteomics | 2002

Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase

Martin Willemoës; Mogens Kilstrup; Peter Roepstorff; Karin Hammer

The sequence of the genome from the Lactococcus lactis subspecies lactis strain IL1403 shows the presence of two reading frames, gapA and gapB, putatively encoding glyceraldehyde 3‐phosphate dehydrogenase (GAPDH). Previous proteomic analysis of the L. lactis subspecies cremoris strain MG1363 has revealed two neighbouring protein spots, GapBI and GapBII, with amino terminal sequences identical to the product of gapA from the L. lactis subspecies cremoris strain LM0230 and that of the two IL1403 sequences. In order to assign the two protein spots to their respective genes we constructed an L. lactis strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild‐type, the overexpressing strain had a 3.4‐fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG1363 and the gapA overexpressing strain the GAPDH activity was specific for NAD. No NADP dependent activity was detected. Proteome analysis of the gapA overexpressing strain revealed two new protein spots, GapAI and GapAII, not previously detected in proteome analysis of MG1363. Results from mass spectrometry analysis of GapA and GapB and comparison with the deduced protein sequences for the GAPDH isozymes from the genome sequence of strain IL1403 allowed us to assign GapA and GapB to their apparent IL1403 homologues encoded by gapA and gapB, respectively. Furthermore, we suggest that a homologue of a gapB product, represented by GapB, is the main source of GAPDH activity in L. lactis during normal growth.


Microbiology | 2010

Two nucleoside transporters in Lactococcus lactis with different substrate specificities.

Jan Martinussen; Claus Hedegaard Sørensen; Christian Bille Jendresen; Mogens Kilstrup

In an alternative to biosynthesis of nucleotides, most organisms are capable of exploiting exogenous nucleotide sources. In order to do so, the nucleotide precursors must pass the membrane, which requires the presence of transporters. Normally, phosphorylated compounds are not subject to transport, and the utilization of nucleotides is dependent on exogenous phosphatases. The composition of transporters with specificity for purine and pyrimidine nucleosides and nucleobases is subject to variation. The ability of Lactococcus lactis to transport different nucleosides across the cell membrane was characterized at both genetic and physiological level, using mutagenesis and by measuring the growth and uptake of nucleosides in the different mutants supplemented with different nucleosides. Two high affinity transporters were identified: BmpA-NupABC was shown to be an ABC transporter with the ability to actively transport all common nucleosides, whereas UriP was shown to be responsible for the uptake of only uridine and deoxyuridine. Interestingly, the four genes encoding the ABC transporter were found at different positions on the chromosome. The bmpA gene was separated from the nupABC operon by 60 kb. Moreover, bmpA was subject to regulation by purine availability, whereas the nupABC operon was constitutively expressed.


Analytical Biochemistry | 2011

A simplified method for rapid quantification of intracellular nucleoside triphosphates by one-dimensional thin-layer chromatography

Christian Bille Jendresen; Mogens Kilstrup; Jan Martinussen

Quantification of nucleotides is an important part of metabolomics but has been hampered by the lack of fast, sensitive, and reliable methods. We present a less time-consuming, more sensitive, and more precise method for the quantitative determination of nucleoside triphosphates (NTPs), 5-ribosyl-1-pyrophosphate (PRPP), and inorganic pyrophosphate (PP(i)) in cell extracts. The method uses one-dimensional thin-layer chromatography (TLC) and radiolabeled biological samples. Nucleotides are resolved at the level of ionic charge in an optimized acidic ammonium formate and chloride solvent, permitting quantification of NTPs. The method is significantly simpler and faster than both current two-dimensional methods and high-performance liquid chromatography (HPLC)-based procedures, allowing a higher throughput while common sources of inaccuracies and technical problems are avoided. For determination of PP(i), treatment with inorganic pyrophosphatase (PPase) of the radiolabeled phosphate is employed for removal of contaminating pyrophosphate. Biological examples performed in triplicates showed standard deviations of approximately 10% of the mean for the determined concentrations of NTPs.


Microbiology and Molecular Biology Reviews | 2017

Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance

Bjarne Hove-Jensen; Kasper R. Andersen; Mogens Kilstrup; Jan Martinussen; Robert L. Switzer; Martin Willemoës

SUMMARY Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.


Journal of Bacteriology | 2000

Inactivation of gltB Abolishes Expression of the Assimilatory Nitrate Reductase Gene (nasB) in Pseudomonas putida KT2442

Leo Eberl; Aldo Ammendola; Michael Rothballer; Michael Givskov; Claus Sternberg; Mogens Kilstrup; Karl-Heinz Schleifer; Søren Molin

By using mini-Tn5 transposon mutagenesis, random transcriptional fusions of promoterless bacterial luciferase, luxAB, to genes of Pseudomonas putida KT2442 were generated. Insertion mutants that responded to ammonium deficiency by induction of bioluminescence were selected. The mutant that responded most strongly was genetically analyzed and is demonstrated to bear the transposon within the assimilatory nitrate reductase gene (nasB) of P. putida KT2442. Genetic evidence as well as sequence analyses of the DNA regions flanking nasB suggest that the genes required for nitrate assimilation are not clustered. We isolated three second-site mutants in which induction of nasB expression was completely abolished under nitrogen-limiting conditions. Nucleotide sequence analysis of the chromosomal junctions revealed that in all three mutants the secondary transposon had inserted at different sites in the gltB gene of P. putida KT2442 encoding the major subunit of the glutamate synthase. A detailed physiological characterization of the gltB mutants revealed that they are unable to utilize a number of potential nitrogen sources, are defective in the ability to express nitrogen starvation proteins, display an aberrant cell morphology under nitrogen-limiting conditions, and are impaired in the capacity to survive prolonged nitrogen starvation periods.

Collaboration


Dive into the Mogens Kilstrup's collaboration.

Top Co-Authors

Avatar

Jan Martinussen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Karin Hammer

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Mette Meisner Hviid

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanne Ingmer

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge