Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Hammer is active.

Publication


Featured researches published by Karin Hammer.


Biotechnology and Bioengineering | 1998

Artificial promoters for metabolic optimization.

Peter Ruhdal Jensen; Karin Hammer

In this article, we review some of the expression systems that are available for Metabolic Control Analysis and Metabolic Engineering, and examine their advantages and disadvantages in different contexts. In a recent approach, artificial promoters for modulating gene expression in micro-organisms were constructed using synthetic degenerated oligonucleotides. From this work, a promoter library was obtained for Lactococcus lactis, containing numerous individual promoters and covering a wide range of promoter activities. Importantly, the range of promoter activities was covered in small steps of activity change. Promoter libraries generated by this approach allow for optimization of gene expression and for experimental control analysis in a wide range of biological systems by choosing from the promoter library promoters giving, e.g., 25%, 50%, 200%, and 400% of the normal expression level of the gene in question. If the relevant variable (e.g., the flux or yield) is then measured with each of these constructs, then one can calculate the control coefficient and determine the optimal expression level. One advantage of the method is that the construct which is found to have the optimal expression level is then, in principle, ready for use in the industrial fermentation process; another advantage is that the system can be used to optimize the expression of different enzymes within the same cell.


Journal of Antimicrobial Chemotherapy | 2008

Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment

Louise Feld; Susanne Schjørring; Karin Hammer; Tine Rask Licht; Morten Danielsen; Karen A. Krogfelt; Andrea Wilcks

OBJECTIVES AND METHODS A Lactobacillus plantarum strain recently isolated from French raw-milk cheese was tested for its ability to transfer a small plasmid pLFE1 harbouring the erythromycin resistance gene erm(B) to Enterococcus faecalis. Mating was studied in vitro and in different gastrointestinal environments using gnotobiotic rats as a simple in vivo model and streptomycin-treated mice as a more complex model. Transfer and establishment of transconjugants in the intestine were investigated with and without selective pressure. RESULTS Compared with the relatively low transfer frequency of approximately 5.7 x 10(-8) transconjugants/recipient obtained in vitro by filter mating, a surprisingly high number of transconjugants (10(-4) transconjugants/recipient) was observed in gnotobiotic rats even without antibiotic treatment. When erythromycin was administered, a transfer rate of approximately 100% was observed, i.e. the recipient population turned completely into transconjugants (3 x 10(9) cfu/g faeces). Additionally, the time to reach a stable transconjugant population level was much faster in the erythromycin-treated gnotobiotic rats (1 day) than in the untreated animals (4-5 days). Transconjugants persisted in the gut in relatively stable numbers at least 12 days after termination of antibiotic treatment. In the streptomycin-treated mice, no transfer was observed either with or without erythromycin treatment. CONCLUSIONS The overall results imply that the gastrointestinal tract may comprise a more favourable environment for antibiotic resistance transfer than conditions provided in vitro. However, the indigenous gut microbiota severely restricts transfer, thus minimizing the number of detectable transfer events. Treatment with erythromycin strongly favoured transfer and establishment of pLFE1.


Microbiology | 1996

Analysis of heat shock gene expression in Lactococcus lactis MG1363

José Arnau; Kim I. Sørensen; Karen F. Appel; Finn K. Vogensen; Karin Hammer

The induction of the heat shock response in Lactococcus lactis subsp. cremoris strain MG1363 was analysed at the RNA level using a novel RNA isolation procedure to prevent degradation. Cloning of the dnaJ and groEL homologues was carried out. Northern blot analysis showed a similar induction pattern for dnaK, dnaJ and groELS after transfer from 30 degrees C to 43 degrees C when MG1363 was grown in defined medium. The dnaK gene showed a 100-fold induction level 15 min after temperature shifting. Induction of the first two genes in the dnaK operon, orf1 and grpE, resembled the pattern observed for the above genes, although maximum induction was observed earlier for orf1 and grpE. Novel transcript sizes were detected in heat-shocked cells. The induction kinetics observed for ftsH suggested a different regulation for this gene. Experimental evidence for a pronounced transcriptional regulation being involved in the heat shock response in L. lactis MG1363 is presented. A gene located downstream of the dnaK operon in strain MG1363, named orf4, was shown not to be regulated by heat shock.


Journal of Bacteriology | 2001

Twofold Reduction of Phosphofructokinase Activity in Lactococcus lactis Results in Strong Decreases in Growth Rate and in Glycolytic Flux

Heidi Winterberg Andersen; Christian Solem; Karin Hammer; Peter Ruhdal Jensen

Two mutant strains of Lactococcus lactis in which the promoter of the las operon, harboring pfk, pyk, and ldh, were replaced by synthetic promoters were constructed. These las mutants had an approximately twofold decrease in the activity of phosphofructokinase, whereas the activities of pyruvate kinase and lactate dehydrogenase remained closer to the wild-type level. In defined medium supplemented with glucose, the growth rate of the mutants was reduced to 57 to 70% of wild-type levels and the glycolytic flux was reduced to 62 to 76% of wild-type levels. In complex medium growth was even further reduced. Surprisingly, the mutants still showed homolactic fermentation, which indicated that the limitation was different from standard glucose-limited conditions. One explanation could be that the reduced activity of phosphofructokinase resulted in the accumulation of sugar-phosphates. Indeed, when one of the mutants was starved for glucose in glucose-limited chemostat, the growth rate could gradually be increased to 195% of the growth rate observed in glucose-saturated batch culture, suggesting that phosphofructokinase does affect the concentration of upstream metabolites. The pools of glucose-6-phosphate and fructose-6-phosphate were subsequently found to be increased two- to fourfold in the las mutants, which indicates that phosphofructokinase exerts strong control over the concentration of these metabolites.


Journal of Bacteriology | 2001

Changes in rRNA levels during stress invalidates results from mRNA blotting: Fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels

Martin C. Hansen; Allan K. Nielsen; Søren Molin; Karin Hammer; Mogens Kilstrup

Regulation of gene expression can be analyzed by a number of different techniques. Some techniques monitor the level of specific mRNA directly, and others monitor indirectly by determining the level of enzymes encoded by the mRNA. Each method has its own inherent way of normalization. When results obtained by these techniques are compared between experiments in which differences in growth rates, strains, or stress treatments occur, the normalization procedure may have a significant impact on the results. In this report we present a solution to the normalization problem in RNA slot blotting experiments, in which mRNA levels routinely are normalized to a fixed amount of extracted total RNA. The cellular levels of specific mRNA species were estimated using a renormalization with the total RNA content per cell. By a combination of fluorescence in situ rRNA hybridization, which estimates the relative level of rRNA per cell, and slot blotting to rRNA probes, which estimates the level of rRNA per extracted total RNA, the amount of RNA per cell was calculated in a series of heat shock experiments with the gram-positive bacterium Lactococcus lactis. It was found that the level of rRNA per cell decreased to 30% in the course of the heat shock. This lowered ribosome level led to a decrease in the total RNA content, resulting in a gradually increasing overestimation of the mRNA levels throughout the experiment. Using renormalized cellular mRNA levels, the HrcA-mediated regulation of the genes in the hrcA-grpE-dnaK operon was analyzed. The hybridization data suggested a complex heat shock regulation indicating that the mRNA levels continued to rise after 30 min, but after renormalization the calculated average cellular levels exhibited a much simpler induction pattern, eventually attaining a moderately increased value.


Applied and Environmental Microbiology | 2013

Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny

Jennifer Mahony; Witold Kot; James Murphy; Stuart Ainsworth; Horst Neve; Lars Hestbjerg Hansen; Knut J. Heller; Søren J. Sørensen; Karin Hammer; Christian Cambillau; Finn K. Vogensen; Douwe van Sinderen

Comparative genomics of 11 lactococcal 936-type phages combined with host range analysis allowed subgrouping of these phage genomes, particularly with respect to their encoded receptor binding proteins. The so-called pellicle or cell wall polysaccharide of Lactococcus lactis, which has been implicated as a host receptor of (certain) 936-type phages, is specified by a large gene cluster, which, among different lactococcal strains, contains highly conserved regions as well as regions of diversity. The regions of diversity within this cluster on the genomes of lactococcal strains MG1363, SK11, IL1403, KF147, CV56, and UC509.9 were used for the development of a multiplex PCR system to identify the pellicle genotype of lactococcal strains used in this study. The resulting comparative analysis revealed an apparent correlation between the pellicle genotype of a given host strain and the host range of tested 936-type phages. Such a correlation would allow prediction of the intrinsic 936-type phage sensitivity of a particular lactococcal strain and substantiates the notion that the lactococcal pellicle polysaccharide represents the receptor for (certain) 936-type phages while also partially explaining the molecular reasons behind the observed narrow host range of such phages.


Microbiology | 1998

Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region

Peter L. Madsen; Karin Hammer

Transcriptional analysis by Northern blotting identified clusters of early, middle and late transcribed regions of the temperate lactococcal bacteriophage TP901-1 during one-step growth experiments. The latent period was found to be 65 min and the burst size 40 +/- 10. The eight early transcripts, all mapping in a 13 kb region adjacent to the attachment site of TP901-1, were present at maximal levels 10 min after infection. The four middle transcripts, observed at maximal levels 30 min after infection, are all located within a 2 kb region at the distal end of the early transcripts. The late class of transcripts were detected 40 min after infection and the amounts of these transcripts increased with time. The late transcripts were localized to the 13 kb region adjacent to the 2 kb middle transcribed region. The sequence of almost 4 kb of the early region was determined, allowing a detailed transcriptional map for the early region of which in total 6.4 kb was sequenced. Sequence analysis of the early region revealed two closely positioned but divergently orientated promoters, PL and PR, in accordance with the orientation of the ORFs and the transcriptional map. Nine ORFs were found, and similarities to a phage repressor, a single-stranded DNA-binding protein, a topoisomerase, a Cro-like protein and two other phage proteins of unknown function were detected. The gene arrangement in the early transcribed region of TP901-1 thus consists of two transcriptional units: one from PR containing four genes, of which at least two (the integrase gene and putative repressor) are needed for lysogeny, and the divergent and longer transcriptional unit from PL, presumably encoding functions required for the lytic life cycle. ORFs with homology to proteins involved in DNA replication were identified on the latter transcriptional unit.


Journal of Bacteriology | 2001

The Pyrimidine Operon pyrRPB-carA from Lactococcus lactis

Jan Martinussen; Jette Schallert; Birgit Andersen; Karin Hammer

The four genes pyrR, pyrP, pyrB, and carA were found to constitute an operon in Lactococcus lactis subsp. lactis MG1363. The functions of the different genes were established by mutational analysis. The first gene in the operon is the pyrimidine regulatory gene, pyrR, which is responsible for the regulation of the expression of the pyrimidine biosynthetic genes leading to UMP formation. The second gene encodes a membrane-bound high-affinity uracil permease, required for utilization of exogenous uracil. The last two genes in the operon, pyrB and carA, encode pyrimidine biosynthetic enzymes; aspartate transcarbamoylase (pyrB) is the second enzyme in the pathway, whereas carbamoyl-phosphate synthetase subunit A (carA) is the small subunit of a heterodimeric enzyme, catalyzing the formation of carbamoyl phosphate. The carA gene product is shown to be required for both pyrimidine and arginine biosynthesis. The expression of the pyrimidine biosynthetic genes including the pyrRPB-carA operon is subject to control at the transcriptional level, most probably by an attenuator mechanism in which PyrR acts as the regulatory protein.


Microbiology | 2001

Resolvase-like recombination performed by the TP901-1 integrase

Anne Breüner; Lone Brøndsted; Karin Hammer

The site-specific recombination system of temperate lactococcal bacteriophage TP901-1 is unusual in several respects. First, the integrase belongs to the family of extended resolvases rather than to the lambda integrase family and second, in the presence of this integrase, a 56 bp attP fragment is sufficient for efficient recombination with the chromosomal attB site in the host Lactococcus lactis subsp. cremoris MG1363. In the present work, this attB site was analysed and a 43 bp attB region was found to be the smallest fragment able to participate fully in recombination. In vitro studies showed that the TP901-1 integrase binds this 43 bp attB fragment, the 56 bp attP and a larger attP fragment with equal affinity. Mutational analysis of the 5 bp common core region (TCAAT) showed that the TC dinucleotide is essential for recombination, but not for binding of the integrase, whereas none of the last three bases are important for recombination. When a number of attL sites, obtained by recombination between an attB site containing a mutation in this TC dinucleotide and a wild-type attP site, were sequenced, a mix of sites with the wild-type or the mutated sequence was obtained. These results are consistent with the hypothesis that the TC dinucleotide constitutes the TP901-1 overlap region. A 2 bp overlap region has been observed in recombination reactions catalysed by all other members of the resolvase/invertase family tested so far. By selecting for attB sites with a decreased ability to participate in recombination, two bases located outside the core region of attB were shown to be involved in the in vitro binding of the TP901-1 integrase.


European Heart Journal | 2015

A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling.

Juan E. Camacho Londoño; Qinghai Tian; Karin Hammer; Laura Schröder; Julia Camacho Londoño; Jan Christian Reil; Tao He; Martin Oberhofer; Stefanie Mannebach; Ilka Mathar; Stephan E. Philipp; Wiebke Tabellion; Frank Schweda; Alexander Dietrich; Lars Kaestner; Ulrich Laufs; Lutz Birnbaumer; Veit Flockerzi; Marc Freichel; Peter Lipp

AIMS Pathological cardiac hypertrophy is a major predictor for the development of cardiac diseases. It is associated with chronic neurohumoral stimulation and with altered cardiac Ca(2+) signalling in cardiomyocytes. TRPC proteins form agonist-induced cation channels, but their functional role for Ca(2+) homeostasis in cardiomyocytes during fast cytosolic Ca(2+) cycling and neurohumoral stimulation leading to hypertrophy is unknown. METHODS AND RESULTS In a systematic analysis of multiple knockout mice using fluorescence imaging of electrically paced adult ventricular cardiomyocytes and Mn(2+)-quench microfluorimetry, we identified a background Ca(2+) entry (BGCE) pathway that critically depends on TRPC1/C4 proteins but not others such as TRPC3/C6. Reduction of BGCE in TRPC1/C4-deficient cardiomyocytes lowers diastolic and systolic Ca(2+) concentrations both, under basal conditions and under neurohumoral stimulation without affecting cardiac contractility measured in isolated hearts and in vivo. Neurohumoral-induced cardiac hypertrophy as well as the expression of foetal genes (ANP, BNP) and genes regulated by Ca(2+)-dependent signalling (RCAN1-4, myomaxin) was reduced in TRPC1/C4 knockout (DKO), but not in TRPC1- or TRPC4-single knockout mice. Pressure overload-induced hypertrophy and interstitial fibrosis were both ameliorated in TRPC1/C4-DKO mice, whereas they did not show alterations in other cardiovascular parameters contributing to systemic neurohumoral-induced hypertrophy such as renin secretion and blood pressure. CONCLUSIONS The constitutively active TRPC1/C4-dependent BGCE fine-tunes Ca(2+) cycling in beating adult cardiomyocytes. TRPC1/C4-gene inactivation protects against development of maladaptive cardiac remodelling without altering cardiac or extracardiac functions contributing to this pathogenesis.

Collaboration


Dive into the Karin Hammer's collaboration.

Top Co-Authors

Avatar

Peter Ruhdal Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jan Martinussen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mogens Kilstrup

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Margit Pedersen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvain Moineau

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge