Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed Bellahcene is active.

Publication


Featured researches published by Mohamed Bellahcene.


FEBS Letters | 2010

Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids

Mohamed S. Zaibi; Claire J. Stocker; Jacqueline O'Dowd; Alison Davies; Mohamed Bellahcene; Michael A. Cawthorne; Alastair J. H. Brown; David M. Smith; Jonathan R.S. Arch

GPR41 is reportedly expressed in murine adipose tissue and mediates short chain fatty acid (SCFA)‐stimulated leptin secretion by activating Gαi. Here, we agree with a contradictory report in finding no expression of GPR41 in murine adipose tissue. Nevertheless, in the presence of adenosine deaminase to minimise Gαi signalling via the adenosine A1 receptor, SCFA stimulated leptin secretion by adipocytes from wild‐type but not GPR41 knockout mice. Expression of GPR43 was reduced in GPR41 knockout mice. Acetate but not butyrate stimulated leptin secretion in wild‐type mesenteric adipocytes, consistent with mediation of the response by GPR43 rather than GPR41. Pertussis toxin prevented stimulation of leptin secretion by propionate in epididymal adipocytes, implicating Gαi signalling mediated by GPR43 in SCFA‐stimulated leptin secretion.


Cell Metabolism | 2012

Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway

Houman Ashrafian; Gabor Czibik; Mohamed Bellahcene; Dunja Aksentijevic; Anthony C. Smith; Sarah J. Mitchell; Michael S. Dodd; Jennifer A. Kirwan; Jonathan J. Byrne; Christian Ludwig; Henrik Isackson; Arash Yavari; Nicolaj B. Støttrup; Hussain Contractor; Thomas J. Cahill; Natasha Sahgal; Daniel R. Ball; Rune Isak Dupont Birkler; Iain Hargreaves; Daniel A. Tennant; John M. Land; Craig A. Lygate; Mogens Johannsen; Rajesh K. Kharbanda; Stefan Neubauer; Charles Redwood; Rafael de Cabo; Ismayil Ahmet; Mark I. Talan; Ulrich L. Günther

Summary The citric acid cycle (CAC) metabolite fumarate has been proposed to be cardioprotective; however, its mechanisms of action remain to be determined. To augment cardiac fumarate levels and to assess fumarates cardioprotective properties, we generated fumarate hydratase (Fh1) cardiac knockout (KO) mice. These fumarate-replete hearts were robustly protected from ischemia-reperfusion injury (I/R). To compensate for the loss of Fh1 activity, KO hearts maintain ATP levels in part by channeling amino acids into the CAC. In addition, by stabilizing the transcriptional regulator Nrf2, Fh1 KO hearts upregulate protective antioxidant response element genes. Supporting the importance of the latter mechanism, clinically relevant doses of dimethylfumarate upregulated Nrf2 and its target genes, hence protecting control hearts, but failed to similarly protect Nrf2-KO hearts in an in vivo model of myocardial infarction. We propose that clinically established fumarate derivatives activate the Nrf2 pathway and are readily testable cytoprotective agents.


British Journal of Nutrition | 2013

Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content

Mohamed Bellahcene; Jacqueline O'Dowd; Ed Wargent; Mohamed S. Zaibi; David C. Hislop; Robert A. Ngala; David M. Smith; Michael A. Cawthorne; Claire J. Stocker; Jonathan R.S. Arch

SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in β-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.


Circulation Research | 2012

AMP-Activated Protein Kinase Phosphorylates Cardiac Troponin I and Alters Contractility of Murine Ventricular Myocytes

Sandra Marisa Oliveira; Yin Hua Zhang; Raquel Sancho Solis; Henrik Isackson; Mohamed Bellahcene; Arash Yavari; Katalin Pinter; Joanna K. Davies; Ying Ge; Houman Ashrafian; Jeffery W. Walker; David Carling; Hugh Watkins; Barbara Casadei; Charles Redwood

Rationale: AMP-activated protein kinase (AMPK) is an important regulator of energy balance and signaling in the heart. Mutations affecting the regulatory &ggr;2 subunit have been shown to cause an essentially cardiac-restricted phenotype of hypertrophy and conduction disease, suggesting a specific role for this subunit in the heart. Objective: The &ggr; isoforms are highly conserved at their C-termini but have unique N-terminal sequences, and we hypothesized that the N-terminus of &ggr;2 may be involved in conferring substrate specificity or in determining intracellular localization. Methods and Results: A yeast 2-hybrid screen of a human heart cDNA library using the N-terminal 273 residues of &ggr;2 as bait identified cardiac troponin I (cTnI) as a putative interactor. In vitro studies showed that cTnI is a good AMPK substrate and that Ser150 is the principal residue phosphorylated. Furthermore, on AMPK activation during ischemia, Ser150 is phosphorylated in whole hearts. Using phosphomimics, measurements of actomyosin ATPase in vitro and force generation in demembraneated trabeculae showed that modification at Ser150 resulted in increased Ca2+ sensitivity of contractile regulation. Treatment of cardiomyocytes with the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) resulted in increased myocyte contractility without changing the amplitude of Ca2+ transient and prolonged relaxation despite shortening the time constant of Ca2+ transient decay (tau). Compound C prevented the effect of AICAR on myocyte function. These results suggest that AMPK activation increases myocyte contraction and prolongs relaxation by increasing myofilament Ca2+ sensitivity. Conclusions: We conclude that cTnI phosphorylation by AMPK may represent a novel mechanism of regulation of cardiac function.


Cell Metabolism | 2016

Chronic Activation of γ2 AMPK Induces Obesity and Reduces β Cell Function

Arash Yavari; Claire J. Stocker; Sahar Ghaffari; Edward T. Wargent; Violetta Steeples; Gabor Czibik; Katalin Pinter; Mohamed Bellahcene; Angela Woods; Pablo Blanco Martinez de Morentin; Celine Cansell; Brian Yee Hong Lam; André Chuster; Kasparas Petkevicius; Marie-Sophie Nguyen-Tu; Aida Martinez-Sanchez; Timothy J. Pullen; Peter L. Oliver; A Stockenhuber; Chinh Nguyen; Merzaka Lazdam; Jacqueline F. O’Dowd; Parvathy E. Harikumar; Mónika Tóth; Craig Beall; Theodosios Kyriakou; Julia Parnis; Dhruv Sarma; George Katritsis; Diana D.J. Wortmann

Summary Despite significant advances in our understanding of the biology determining systemic energy homeostasis, the treatment of obesity remains a medical challenge. Activation of AMP-activated protein kinase (AMPK) has been proposed as an attractive strategy for the treatment of obesity and its complications. AMPK is a conserved, ubiquitously expressed, heterotrimeric serine/threonine kinase whose short-term activation has multiple beneficial metabolic effects. Whether these translate into long-term benefits for obesity and its complications is unknown. Here, we observe that mice with chronic AMPK activation, resulting from mutation of the AMPK γ2 subunit, exhibit ghrelin signaling-dependent hyperphagia, obesity, and impaired pancreatic islet insulin secretion. Humans bearing the homologous mutation manifest a congruent phenotype. Our studies highlight that long-term AMPK activation throughout all tissues can have adverse metabolic consequences, with implications for pharmacological strategies seeking to chronically activate AMPK systemically to treat metabolic disease.


Journal of Biological Chemistry | 2015

Resistance of dynamin-related protein 1 oligomers to disassembly impairs mitophagy, resulting in myocardial inflammation and heart failure.

Thomas J. Cahill; Vincenzo C. Leo; Matthew Kelly; A Stockenhuber; Nolan W. Kennedy; Leyuan Bao; G Cereghetti; Andrew R. Harper; Gabor Czibik; C Lao; Mohamed Bellahcene; Violetta Steeples; Sahar Ghaffari; Arash Yavari; Alice Mayer; Joanna Poulton; Ferguson Djp.; Luca Scorrano; Nishani T. Hettiarachchi; Chris Peers; John P. Boyle; R B Hill; Alison Simmons; Hugh Watkins; T N Dear; Houman Ashrafian

Background: The C452F mutation in the mitochondrial fission protein Drp1 leads to heart failure through an unknown mechanism. Results: C452F impairs Drp1 disassembly, leading to impaired mitophagy, failed bioenergetics, and inflammation. Conclusion: Drp1-mediated mitochondrial fission is essential for normal cardiac function. Significance: Mutations in mitochondrial quality control proteins are a likely cause of human cardiomyopathy. We have reported previously that a missense mutation in the mitochondrial fission gene Dynamin-related protein 1 (Drp1) underlies the Python mouse model of monogenic dilated cardiomyopathy. The aim of this study was to investigate the consequences of the C452F mutation on Drp1 protein function and to define the cellular sequelae leading to heart failure in the Python monogenic dilated cardiomyopathy model. We found that the C452F mutation increased Drp1 GTPase activity. The mutation also conferred resistance to oligomer disassembly by guanine nucleotides and high ionic strength solutions. In a mouse embryonic fibroblast model, Drp1 C452F cells exhibited abnormal mitochondrial morphology and defective mitophagy. Mitochondria in C452F mouse embryonic fibroblasts were depolarized and had reduced calcium uptake with impaired ATP production by oxidative phosphorylation. In the Python heart, we found a corresponding progressive decline in oxidative phosphorylation with age and activation of sterile inflammation. As a corollary, enhancing autophagy by exposure to a prolonged low-protein diet improved cardiac function in Python mice. In conclusion, failure of Drp1 disassembly impairs mitophagy, leading to a downstream cascade of mitochondrial depolarization, aberrant calcium handling, impaired ATP synthesis, and activation of sterile myocardial inflammation, resulting in heart failure.


American Journal of Physiology-endocrinology and Metabolism | 2016

Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle

Thomas E. Jensen; Yu-Chiang Lai; Agnete Lb Madsen; Caterina Collodet; Samanta Kviklyte; Maria Deak; Arash Yavari; Marc Foretz; Sahar Ghaffari; Mohamed Bellahcene; Houman Ashrafian; Mark H. Rider; Erik A. Richter; Kei Sakamoto

AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory β (β1 and β2)- and γ (γ1, γ2, γ3)-subunits, which are uniquely distributed across different cell types. There has been keen interest in developing specific and isoform-selective AMPK-activating drugs for therapeutic use and also as research tools. Moreover, establishing ways of enhancing cellular AMPK activity would be beneficial for both purposes. Here, we investigated if a recently described potent AMPK activator called 991, in combination with the commonly used activator 5-aminoimidazole-4-carboxamide riboside or contraction, further enhances AMPK activity and glucose transport in mouse skeletal muscle ex vivo. Given that the γ3-subunit is exclusively expressed in skeletal muscle and has been implicated in contraction-induced glucose transport, we measured the activity of AMPKγ3 as well as ubiquitously expressed γ1-containing complexes. We initially validated the specificity of the antibodies for the assessment of isoform-specific AMPK activity using AMPK-deficient mouse models. We observed that a low dose of 991 (5 μM) stimulated a modest or negligible activity of both γ1- and γ3-containing AMPK complexes. Strikingly, dual treatment with 991 and 5-aminoimidazole-4-carboxamide riboside or 991 and contraction profoundly enhanced AMPKγ1/γ3 complex activation and glucose transport compared with any of the single treatments. The study demonstrates the utility of a dual activator approach to achieve a greater activation of AMPK and downstream physiological responses in various cell types, including skeletal muscle.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity

Owen M. Siggs; A Stockenhuber; Mukta Deobagkar-Lele; Katherine R. Bull; Tanya L. Crockford; Bethany L. Kingston; Greg Crawford; Consuelo Anzilotti; Violetta Steeples; Sahar Ghaffari; Gabor Czibik; Mohamed Bellahcene; Hugh Watkins; Houman Ashrafian; Benjamin Davies; Angela Woods; David Carling; Arash Yavari; Bruce Beutler; Richard J. Cornall

Significance Cellular metabolism is tightly regulated by AMP-activated protein kinase (AMPK): the function of which is influenced by folliculin (FLCN), folliculin-interacting protein (FNIP)1, and FNIP2. FLCN is a known tumor-suppressor protein that is mutated in Birt–Hogg–Dubé syndrome, whereas FNIP1 and FNIP2 are binding partners of FLCN. Previous reports have suggested that the FLCN/FNIP1/FNIP2 complex acts a positive regulator of AMPK, whereas other reports suggest the opposite. Using a new mouse model of FNIP1 deficiency, our findings support the latter: we found that mutation of Fnip1 leads to B-cell deficiency and the development of a cardiomyopathy similar to mice and humans with gain-of-function mutations in AMPK. Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt–Hogg–Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1. Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51–like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK.


Nature Communications | 2017

Mammalian γ2 AMPK regulates intrinsic heart rate

Arash Yavari; Mohamed Bellahcene; Annalisa Bucchi; S Sirenko; Katalin Pinter; Neil Herring; Julia Jeannine Jung; Kirill V. Tarasov; Emily J. Sharpe; Markus Wolfien; Gabor Czibik; Violetta Steeples; Sahar Ghaffari; C Nguyen; A Stockenhuber; Clair Jrs.; Christian Rimmbach; Y Okamoto; Da Yang; Min Wang; B D Ziman; J M Moen; Riordon; C Ramirez; M Paina; J. Lee; Jianzhi Zhang; Ismayil Ahmet; Michael G. Matt; Y S Tarasova

AMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αβγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia). Here, we show that γ2 AMPK activation downregulates fundamental sinoatrial cell pacemaker mechanisms to lower heart rate, including sarcolemmal hyperpolarization-activated current (If) and ryanodine receptor-derived diastolic local subsarcolemmal Ca2+ release. In contrast, loss of γ2 AMPK induces a reciprocal phenotype of increased heart rate, and prevents the adaptive intrinsic bradycardia of endurance training. Our results reveal that in mammals, for which heart rate is a key determinant of cardiac energy demand, AMPK functions in an organ-specific manner to maintain cardiac energy homeostasis and determines cardiac physiological adaptation to exercise by modulating intrinsic sinoatrial cell behavior.AMPK regulates cellular energy balance using its γ subunit as an energy sensor of cellular AMP and ADP to ATP ratios. Here, the authors show that γ2 AMPK activation lowers heart rate by reducing the activity of pacemaker cells, whereas loss of γ2 AMPK increases heart rate and prevents the adaptive bradycardia of endurance training in mice.


Journal of Molecular and Cellular Cardiology | 2018

Mutant Muscle LIM Protein C58G causes cardiomyopathy through protein depletion.

Mehroz Ehsan; Matthew Kelly; Charlotte Hooper; Arash Yavari; Julia Beglov; Mohamed Bellahcene; Kirandeep Ghataorhe; Giulia Poloni; Anuj Goel; Theodosios Kyriakou; Karin Fleischanderl; Elisabeth Ehler; Eugene V. Makeyev; Stephan Lange; Houman Ashrafian; Charles Redwood; Benjamin Davies; Hugh Watkins; Katja Gehmlich

Cysteine and glycine rich protein 3 (CSRP3) encodes Muscle LIM Protein (MLP), a well-established disease gene for Hypertrophic Cardiomyopathy (HCM). MLP, in contrast to the proteins encoded by the other recognised HCM disease genes, is non-sarcomeric, and has important signalling functions in cardiomyocytes. To gain insight into the disease mechanisms involved, we generated a knock-in mouse (KI) model, carrying the well documented HCM-causing CSRP3 mutation C58G. In vivo phenotyping of homozygous KI/KI mice revealed a robust cardiomyopathy phenotype with diastolic and systolic left ventricular dysfunction, which was supported by increased heart weight measurements. Transcriptome analysis by RNA-seq identified activation of pro-fibrotic signalling, induction of the fetal gene programme and activation of markers of hypertrophic signalling in these hearts. Further ex vivo analyses validated the activation of these pathways at transcript and protein level. Intriguingly, the abundance of MLP decreased in KI/KI mice by 80% and in KI/+ mice by 50%. Protein depletion was also observed in cellular studies for two further HCM-causing CSRP3 mutations (L44P and S54R/E55G). We show that MLP depletion is caused by proteasome action. Moreover, MLP C58G interacts with Bag3 and results in a proteotoxic response in the homozygous knock-in mice, as shown by induction of Bag3 and associated heat shock proteins. In conclusion, the newly generated mouse model provides insights into the underlying disease mechanisms of cardiomyopathy caused by mutations in the non-sarcomeric protein MLP. Furthermore, our cellular experiments suggest that protein depletion and proteasomal overload also play a role in other HCM-causing CSPR3 mutations that we investigated, indicating that reduced levels of functional MLP may be a common mechanism for HCM-causing CSPR3 mutations.

Collaboration


Dive into the Mohamed Bellahcene's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge