Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed Elrobh is active.

Publication


Featured researches published by Mohamed Elrobh.


PLOS ONE | 2011

In silico analysis of single nucleotide polymorphism (SNPs) in human β-globin gene.

Mohammed Alanazi; Zainularifeen Abduljaleel; Wajahatullah Khan; Arjumand S. Warsy; Mohamed Elrobh; Zahid Khan; Abdullah Al Amri; Mohammad D. Bazzi

Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies- the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB) gene mutations, such as that producing sickle cell hemoglobin (HbS), HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT) server we have searched for the SNPs, which showed that 200 (80%) non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40%) non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K), HbD (E→Q), HbE (E→K) and HbS (E→V). Atomic Non-Local Environment Assessment (ANOLEA), Yet Another Scientific Artificial Reality Application (YASARA), CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref) of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid residues were determined and secondary structures were observed for solvent accessibility to confirm the protein stability. The functional study in this investigation may be a good model for additional future studies.


PLOS ONE | 2014

Evidence of Trem2 Variant Associated with Triple Risk of Alzheimer’s Disease

Zainularifeen Abduljaleel; Faisal A. Al-Allaf; Wajahatullah Khan; Mohammad Athar; Naiyer Shahzad; Mohiuddin M. Taher; Mohamed Elrobh; Mohammed Alanazi; Waseem El-Huneidi

Alzheimer’s disease is one of the main causes of dementia among elderly individuals and leads to the neurodegeneration of different areas of the brain, resulting in memory impairments and loss of cognitive functions. Recently, a rare variant that is associated with 3-fold higher risk of Alzheimer’s disease onset has been found. The rare variant discovered is a missense mutation in the loop region of exon 2 of Trem2 (rs75932628-T, Arg47His). The aim of this study was to investigate the evidence for potential structural and functional significance of Trem2 gene variant (Arg47His) through molecular dynamics simulations. Our results showed the alteration caused due to the variant in TREM2 protein has significant effect on the ligand binding affinity as well as structural configuration. Based on molecular dynamics (MD) simulation under salvation, the results confirmed that native form of the variant (Arg47His) might be responsible for improved compactness, hence thereby improved protein folding. Protein simulation was carried out at different temperatures. At 300K, the deviation of the theoretical model of TREM2 protein increased from 2.0 Å at 10 ns. In contrast, the deviation of the Arg47His mutation was maintained at 1.2 Å until the end of the simulation (t = 10 ns), which indicated that Arg47His had reached its folded state. The mutant residue was a highly conserved region and was similar to “immunoglobulin V-set” and “immunoglobulin-like folds”. Taken together, the result from this study provides a biophysical insight on how the studied variant could contribute to the genetic susceptibility to Alzheimer’s disease.


International Journal of Molecular Sciences | 2011

Molecular Cloning and Characterization of cDNA Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus dromedarius

Mohamed Elrobh; Mohammad Alanazi; Wajahatullah Khan; Zainularifeen Abduljaleel; Abdullah Al-Amri; Mohammad D. Bazzi

Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species.


Saudi Journal of Biological Sciences | 2016

Optimization of expression and purification of HSPA6 protein from Camelus dromedarius in E. coli.

Ajamaluddin Malik; Abdulrahman M. Alsenaidy; Mohamed Elrobh; Wajahatullah Khan; Mohammed Alanazi; Mohammad D. Bazzi

The HSPA6, one of the members of large family of HSP70, is significantly up-regulated and has been targeted as a biomarker of cellular stress in several studies. Herein, conditions were optimized to increase the yield of recombinant camel HSPA6 protein in its native state, primarily focusing on the optimization of upstream processing parameters that lead to an increase in the specific as well as volumetric yield of the protein. The results showed that the production of cHSPA6 was increased proportionally with increased incubation temperature up to 37 °C. Induction with 10 μM IPTG was sufficient to induce the expression of cHSPA6 which was 100 times less than normally used IPTG concentration. Furthermore, the results indicate that induction during early to late exponential phase produced relatively high levels of cHSPA6 in soluble form. In addition, 5 h of post-induction incubation was found to be optimal to produce folded cHSPA6 with higher specific and volumetric yield. Subsequently, highly pure and homogenous cHSPA6 preparation was obtained using metal affinity and size exclusion chromatography. Taken together, the results showed successful production of electrophoretically pure recombinant HSPA6 protein from Camelus dromedarius in Escherichia coli in milligram quantities from shake flask liquid culture.


Fems Microbiology Letters | 2013

Two DNA sites for MelR in the same orientation are sufficient for optimal MelR‐dependent repression at the Escherichia coli melR promoter

Mohamed Elrobh; Christine L. Webster; S. Samarasinghe; Danielle Durose; Stephen J. W. Busby

The Escherichia coli melR gene encodes the MelR transcription factor that controls melibiose utilization. Expression of melR is autoregulated by MelR, which represses the melR promoter by binding to a target that overlaps the transcript start. Here, we show that MelR-dependent repression of the melR promoter can be enhanced by the presence of a second single DNA site for MelR located up to 250 base pairs upstream. Parallels with AraC-dependent repression at the araC-araBAD regulatory region and the possibility of the MelR-dependent repression loop formation are discussed. The results show that MelR bound at two distal loci can cooperate together in transcriptional repression.


PLOS ONE | 2017

Occurrence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) across the Gulf Corporation Council countries: Four years update

Mahmoud Aly; Mohamed Elrobh; Maha Alzayer; Sameera M Aljuhani; Hanan H. Balkhy

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections has become a global issue of dire concerns. MERS-CoV infections have been identified in many countries all over the world whereas high level occurrences have been documented in the Middle East and Korea. MERS-CoV is mainly spreading across the geographical region of the Middle East, especially in the Arabian Peninsula, while some imported sporadic cases were reported from the Europe, North America, Africa, and lately Asia. The prevalence of MERS-CoV infections across the Gulf Corporation Council (GCC) countries still remains unclear. Therefore, the objective of the current study was to report the prevalence of MERS-CoV in the GCC countries and to also elucidate on its demographics in the Arabian Peninsula. To date, the World Health Organization (WHO) has reported 1,797 laboratory-confirmed cases of MERS-CoV infection since June 2012, involving 687 deaths in 27 different countries worldwide. Within a time span of 4 years from June 2012 to July 2016, we collect samples form MERS-CoV infected individuals from National Guard Hospital, Riyadh, and Ministry of health Saudi Arabia and other GCC countries. Our data comprise a total of 1550 cases (67.1% male and 32.9% female). The age-specific prevalence and distribution of MERS-CoV was as follow: <20 yrs (36 cases: 3.28%), 20–39 yrs (331 cases: 30.15%), 40–59 yrs (314 cases: 28.60%), and the highest-risk elderly group aged ≥60 yrs (417 cases: 37.98%). The case distribution among GCC countries was as follows: Saudi Arabia (1441 cases: 93%), Kuwait (4 cases: 0.3%), Bahrain (1 case: 0.1%), Oman (8 cases: 0.5%), Qatar (16 cases: 1.0%), and United Arab Emirates (80 cases: 5.2%). Thus, MERS-CoV was found to be more prevalent in Saudi Arabia especially in Riyadh, where 756 cases (52.4%) were the worst hit area of the country identified, followed by the western region Makkah where 298 cases (20.6%) were recorded. This prevalence update indicates that the Arabian Peninsula, particularly Saudi Arabia, is the hardest hit region regarding the emerging MERS-CoV infections worldwide. GCC countries including Saudi Arabia now have the infrastructure in place that allows physicians and scientific community to identify and immediately respond to the potential risks posed by new outbreaks of MERS-CoV infections in the region. Given the continuum of emergence and the large magnitude of the disease in our region, more studies will be required to bolster capabilities for timely detection and effective control and prevention of MERS-CoV in our region.


PLOS ONE | 2018

Genetic polymorphism and expression of HSF1 gene is significantly associated with breast cancer in Saudi females

Sahar Almotwaa; Mohamed Elrobh; Huda AbdulKarim; Mohamed Alanazi; Sooad Al-Daihan; Jilani Shaik; Maha Arafa; Arjumand S. Warsy

The transcription factor, heat shock factor 1 (HSF1), influences the expression of heat shock proteins as well as other activities like the induction of tumor suppressor genes, signal transduction pathway, and glucose metabolism. We hypothesized that single nucleotide polymorphisms (SNPs) in HSF1 gene might affect its expression or function which might have an influence on the development of breast cancer. The study group included 242 individuals (146 breast cancer patients and 96 healthy controls). From the cancer patients, genomic DNA was extracted from 96 blood samples and 50 Formalin-Fixed Paraffin Embedded (FFPE) tissues, while from the controls DNA were extracted from blood only. Genotype was carried out for four SNPs in the HSF1 gene (rs78202224, rs35253356, rs4977219 and rs34404564) using Taqman genotyping assay method. The HSF1 expression was investigated using immunohistochemistry on FFPE tissues (cancer tissue and adjacent normal tissue). The SNP rs78202224 (G>T) was significantly associated with increased risk of breast cancer. The combined TT + GT genotype (OR: 6.91; p: 0.035) and the T allele showed high risk (OR: 5.81; p:0.0085) for breast cancer development. The SNP rs34404564 (A>G) had a protective effect against the development of breast cancer. The genotype AG (OR: 0.41; p = 0.0059) and GG+AG (OR: 0.52; p: 0.026) occurred at a significantly lower frequency in the breast cancer patients compared to the frequency in healthy controls. No significant relationship was identified between either rs35253356 (A>G) or rs4977219 (A>C) and breast cancer in Saudi. The HSF1 protein expression was higher in all invasive and in situ breast carcinoma compared to the normal tissue. A stronger positive staining for HSF1 was found in the nucleus compared to the cytoplasm. Our results show that HSF1 gene expression is elevated in breast cancer tissue and two of the studied SNPs correlate significantly with cancer development.


Gene | 2013

Evidence of colorectal cancer risk associated variant Lys25Ser in the proximity of human bone morphogenetic protein 2.

Wajahatullah Khan; Zainularifeen Abduljaleel; Mohammed Alanazi; Mohamed Elrobh

Colorectal cancer (CRC) is the third most prevalent cancer and fourth leading cause of cancer-related deaths globally. It has been shown that the nsSNP variants play an important role in diseases, however it remained unclear how these variants are associated with the disease. Recently, several CRC risk associated SNPs have been discovered, however rs961253 (Lys25Arg at 20p12.3) located in the proximity of bone morphogenetic protein 2 (Bmp2) and fermitin family homolog 1 Fermt1 genes have been reported to be highly associated with the CRC risk. Here we provide evidence for the first time in silico biological functional and structural implications of non-synonymous (nsSNPs) CRC disease-associated variant Lys25Arg via molecular dynamic (MD) simulation. Protein structural analysis was performed with a particular variant allele (A/C, Lys25Arg) and compared with the predicted native protein structure. Our results showed that this nsSNP will cause changes in the protein structure and as a result is associated with the disease. In addition to the native and mutant 3D structures of CRC associated risk allele protein domain (CRAPD), they were also analyzed using solvent accessibility models for further protein stability confirmation. Taken together, this study confirmed that this variant has functional effect and structural impact on the CRAPD and may play an important role in CRC disease progression; hence it could be a reasonable approach for studying the effect of other deleterious variants in future studies.


European Biophysics Journal | 2015

Spectroscopic and thermodynamic properties of recombinant heat shock protein A6 from Camelus dromedarius

Ajamaluddin Malik; Abuzar Haroon; Haseeb Jagirdar; Abdulrahman M. Alsenaidy; Mohamed Elrobh; Wajahatullah Khan; Mohammed Alanazi; Mohammad D. Bazzi


Molecular Genetics and Genomics | 2014

DNA mismatch repair MSH2 gene-based SNP associated with different populations

Zainularifeen Abduljaleel; Faisal A. Al-Allaf; Wajahatullah Khan; Mohammad Athar; Naiyer Shahzad; Mohiuddin M. Taher; Mohammed Alanazi; Mohamed Elrobh; Narasimha P. Reddy

Collaboration


Dive into the Mohamed Elrobh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge