Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wajahatullah Khan is active.

Publication


Featured researches published by Wajahatullah Khan.


Journal of Plant Growth Regulation | 2009

Seaweed extracts as biostimulants of plant growth and development.

Wajahatullah Khan; Usha P. Rayirath; Sowmyalakshmi Subramanian; Mundaya N. Jithesh; Prasanth Rayorath; Æ D. Mark Hodges; Alan T. Critchley; James S. Craigie; Jeff Norrie; Balakrishan Prithiviraj

Marine algal seaweed species are often regarded as an underutilized bioresource, many have been used as a source of food, industrial raw materials, and in therapeutic and botanical applications for centuries. Moreover, seaweed and seaweed-derived products have been widely used as amendments in crop production systems due to the presence of a number of plant growth-stimulating compounds. However, the biostimulatory potential of many of these products has not been fully exploited due to the lack of scientific data on growth factors present in seaweeds and their mode of action in affecting plant growth. This article provides a comprehensive review of the effect of various seaweed species and seaweed products on plant growth and development with an emphasis on the use of this renewable bioresource in sustainable agricultural systems.


PLOS ONE | 2011

In silico analysis of single nucleotide polymorphism (SNPs) in human β-globin gene.

Mohammed Alanazi; Zainularifeen Abduljaleel; Wajahatullah Khan; Arjumand S. Warsy; Mohamed Elrobh; Zahid Khan; Abdullah Al Amri; Mohammad D. Bazzi

Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies- the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB) gene mutations, such as that producing sickle cell hemoglobin (HbS), HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT) server we have searched for the SNPs, which showed that 200 (80%) non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40%) non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K), HbD (E→Q), HbE (E→K) and HbS (E→V). Atomic Non-Local Environment Assessment (ANOLEA), Yet Another Scientific Artificial Reality Application (YASARA), CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref) of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid residues were determined and secondary structures were observed for solvent accessibility to confirm the protein stability. The functional study in this investigation may be a good model for additional future studies.


Marine Drugs | 2012

Tasco®: A Product of Ascophyllum nodosum Enhances Immune Response of Caenorhabditis elegans Against Pseudomonas aeruginosa Infection

Saveetha Kandasamy; Wajahatullah Khan; Franklin Evans; Alan T. Critchley; Balakrishnan Prithiviraj

The effects of Tasco®, a product made from the brown seaweed (Ascophyllum nodosum) were tested for the ability to protect Caenorhabditis elegans against Pseudomonas aeruginosa infection. A water extract of Tasco® (TWE) reduced P. aeruginosa inflicted mortality in the nematode. The TWE, at a concentration of 300 µg/mL, offered the maximum protection and induced the expression of innate immune response genes viz.; zk6.7 (Lypases), lys-1 (Lysozyme), spp-1 (Saponin like protein), f28d1.3 (Thaumatin like protein), t20g5.7 (Matridin SK domain protein), abf-1 (Antibacterial protein) and f38a1.5 (Lectin family protein). Further, TWE treatment also affected a number of virulence components of the P. aeuroginosa and reduced its secreted virulence factors such as lipase, proteases and toxic metabolites; hydrogen cyanide and pyocyanin. Decreased virulence factors were associated with a significant reduction in expression of regulatory genes involved in quorum sensing, lasI, lasR, rhlI and rhlR. In conclusion, the TWE-treatment protected the C. elegans against P. aeruginosa infection by a combination of effects on the innate immunity of the worms and direct effects on the bacterial quorum sensing and virulence factors.


PLOS ONE | 2014

Evidence of Trem2 Variant Associated with Triple Risk of Alzheimer’s Disease

Zainularifeen Abduljaleel; Faisal A. Al-Allaf; Wajahatullah Khan; Mohammad Athar; Naiyer Shahzad; Mohiuddin M. Taher; Mohamed Elrobh; Mohammed Alanazi; Waseem El-Huneidi

Alzheimer’s disease is one of the main causes of dementia among elderly individuals and leads to the neurodegeneration of different areas of the brain, resulting in memory impairments and loss of cognitive functions. Recently, a rare variant that is associated with 3-fold higher risk of Alzheimer’s disease onset has been found. The rare variant discovered is a missense mutation in the loop region of exon 2 of Trem2 (rs75932628-T, Arg47His). The aim of this study was to investigate the evidence for potential structural and functional significance of Trem2 gene variant (Arg47His) through molecular dynamics simulations. Our results showed the alteration caused due to the variant in TREM2 protein has significant effect on the ligand binding affinity as well as structural configuration. Based on molecular dynamics (MD) simulation under salvation, the results confirmed that native form of the variant (Arg47His) might be responsible for improved compactness, hence thereby improved protein folding. Protein simulation was carried out at different temperatures. At 300K, the deviation of the theoretical model of TREM2 protein increased from 2.0 Å at 10 ns. In contrast, the deviation of the Arg47His mutation was maintained at 1.2 Å until the end of the simulation (t = 10 ns), which indicated that Arg47His had reached its folded state. The mutant residue was a highly conserved region and was similar to “immunoglobulin V-set” and “immunoglobulin-like folds”. Taken together, the result from this study provides a biophysical insight on how the studied variant could contribute to the genetic susceptibility to Alzheimer’s disease.


Communications in Soil Science and Plant Analysis | 2012

Commercial Extract of Ascophyllum nodosum Improves Root Colonization of Alfalfa by Its Bacterial Symbiont Sinorhizobium meliloti

Wajahatullah Khan; Ruijie Zhai; Alfred Souleimanov; Alan T. Critchley; Donald L. Smith; Balakrishnan Prithiviraj

The soil bacterium Sinorhizobium meliloti forms a symbiotic relationship with alfalfa (Medicago sativa) roots, which results in the formation of intracellular root nodules. This symbiosis increases nitrogen (N) in the soil; however, to establish such a synergistic relationship, a complex communication system is required between the bacterium and its legume host. Rhizobacteria are known to respond to plant root exudates and produce signal molecules known as “Nod” factors. Research suggests that the brown seaweed (Ascophyllum nodosum) extract (ANE) stimulates both root nodulation and growth of alfalfa (Khan et al. 2011). To elucidate the mechanism of action, the effects of ANE on the early stages of root–rhizobia interactions were examined. A. nodosum extract (ANE) and its organic fractions were prepared and alfalfa roots were treated. After 2 days, the treated roots were inoculated with S. meliloti. The roots from treated plants were excised and observed for colony-forming units. To verify whether ANE elicited the synthesis and secretion of factors similar to those induced by luteolin, S. meliloti cultures were treated with ANE and the bacterial components were analyzed by high-pressure liquid chromatography (HPLC). To study Nod factor induction by S. meliloti due to ANE treatment, a root hair deformation assay was performed. A translational fusion of S. meliloti NodC:LacZ (strain JM57) was used to observe the effect of ANE on bacterial gene expression. When S. meliloti culture medium was supplemented with ANE, no effect on bacterial growth was observed. However, it was observed that the attachment of S. meliloti to the root hairs was improved. Similarly in vitro ANE root treatments, followed by S. meliloti inoculation, increased bacterial colonies. HPLC profiles and a root hair deformation assay suggested that ANE elicits production of compounds similar to the Nod factor, which are normally induced by the plant signaling molecule luteolin. The results suggest that ANE may contain compound(s) that promote the legume–rhizobia symbiotic relationship and plant signaling.


PLOS ONE | 2011

Carrageenans, Sulphated Polysaccharides of Red Seaweeds, Differentially Affect Arabidopsis thaliana Resistance to Trichoplusia ni (Cabbage Looper)

Jatinder Singh Sangha; Wajahatullah Khan; Xiuhong Ji; Junzeng Zhang; Aaron Mills; Alan T. Critchley; Balakrishnan Prithiviraj

Carrageenans are a collective family of linear, sulphated galactans found in a number of commercially important species of marine red alga. These polysaccharides are known to elicit defense responses in plant and animals and possess anti-viral properties. We investigated the effect of foliar application of ι-, κ- and λ-carrageenans (representing various levels of sulphation) on Arabidopsis thaliana in resistance to the generalist insect Trichoplusia ni (cabbage looper) which is known to cause serious economic losses in crop plants. Plants treated with ι- and κ-carrageenan showed reduced leaf damage, whereas those treated with λ- carrageenan were similar to that of the control. In a no-choice test, larval weight was reduced by more than 20% in ι- and κ- carrageenan treatments, but unaffected by λ-carrageenan. In multiple choice tests, carrageenan treated plants attracted fewer T. ni larvae by the fourth day following infestation as compared to the control. The application of carrageenans did not affect oviposition behaviour of T. ni. Growth of T. ni feeding on an artificial diet amended with carrageenans was not different from that fed with untreated control diet. ι-carrageenan induced the expression of defense genes; PR1, PDF1.2, and TI1, but κ- and λ-carrageenans did not. Besides PR1, PDF1.2, and TI1, the indole glucosinolate biosynthesis genes CYP79B2, CYP83B1 and glucosinolate hydrolysing QTL, ESM1 were up-regulated by ι-carrageenan treatment at 48 h post infestation. Gas chromatography-mass spectrometry analysis of carrageenan treated leaves showed increased concentrations of both isothiocyanates and nitriles. Taken together, these results show that carrageenans have differential effects on Arabidopsis resistance to T. ni and that the degree of sulphation of the polysaccharide chain may well mediate this effect.


Biological Research | 2013

DNA Repair Genes XRCC1, XRCC3, XPD, and OGG1 Polymorphisms among the Central Region Population of Saudi Arabia

Mohammad Alanazi; Akbar Ali Khan Pathan; Sana Abdulla Ajaj; Wajahatullah Khan; Jilani Shaik; Nada Al Tassan; Narasimha Reddy Parine

DNA repair is one of the central defense mechanisms against mutagenic exposures. Inherited SNPs of DNA repair genes may contribute to variations in DNA repair capacity and susceptibility to cancer. Due to the presence of these variants, inter-individual and ethnic differences in DNA repair capacity have been established in various populations. Saudi Arabia harbors enormous genetic and cultural diversity. In the present study we aimed to determine the genotype and allele frequencies of XRCC1 Arg399Gln (rs25487), XRCC3 Thr241Met (rs861539), XPD Lys751Gln (rs13181), and OGG1 Ser326Cys (rs1052133) gene polymorphisms in 386 healthy individuals residing in the central region of Saudi Arabia and compare them with HapMap and other populations. The genotype and allele frequencies of the four DNA repair gene loci in central Saudi population showed a distinctive pattern. Furthermore, comparison of polymorphisms in these genes with other populations also showed a unique pattern for the central Saudi population. To the best of our knowledge, this is the first report that deals with these DNA repair gene polymorphisms among the central Saudi population.


Pharmacology, Biochemistry and Behavior | 2014

Interactions of atenolol with alprazolam/escitalopram on anxiety, depression and oxidative stress

Naiyer Shahzad; Javed Ahmad; Wajahatullah Khan; Saeed S. Al-Ghamdi; M. Ruhal Ain; Ibrahim Abdel Aziz Ibrahim; Mohd Akhtar; Razia Khanam

Anxiety and depression are highly comorbid disorders possibly sharing a common neurobiological mechanism. The dysfunction of serotoninergic, noradrenergic and dopaminergic neurotransmission, abnormal regulation in the hypothalamic-pituitary-adrenal axis (HPA), disturbance of cellular plasticity including reduced neurogenesis, or chronic inflammation connected with high oxidative damage play a crucial role in the development of anxiety and depression. The present study was aimed to investigate the effects of atenolol alone and in combination with alprazolam/escitalopram on anxiety, depression and oxidative stress. Wistar albino rats were subjected to 21 day treatment of drugs then exposed to elevated-plus maze (EPM) and modified forced swim test (MFST), and oxidative stress markers were estimated in isolated brain tissue of all groups. The results indicated that atenolol in combination with alprazolam/escitalopram exhibited antidepressant effects by significantly decreasing the immobility and increasing the swimming behavior in the MFST and anti-anxiety effects by increasing the percentage preference and number of open arm entries as well as time spent in open arm in EPM. Pretreatment with atenolol alone and combination with alprazolam/escitalopram also ameliorated tissue glutathione (GSH) and decreased malondialdehyde (MDA) level significantly which explore antioxidant properties of drugs, and combination augments the therapeutic response of monotherapy in depression. In conclusion behavioral and biological findings indicate that the combination of atenolol with alprazolam/escitalopram has the potential of being highly efficacious in treating anxiety and depressive disorders as well as oxidative stress.


International Journal of Molecular Sciences | 2011

Molecular Cloning and Characterization of cDNA Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus dromedarius

Mohamed Elrobh; Mohammad Alanazi; Wajahatullah Khan; Zainularifeen Abduljaleel; Abdullah Al-Amri; Mohammad D. Bazzi

Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species.


Disease Markers | 2015

Association of DNA Repair Gene APE1 Asp148Glu Polymorphism with Breast Cancer Risk

Fatima AlMutairi; Akbar Ali Khan Pathan; Mohammed Alanazi; Manal Shalaby; Huda A. Alabdulkarim; Abdullah Al-Amri; Abdulrahman Al Naeem; Moammad Elrobh; Jilani Shaik; Wajahatullah Khan; Zahid Khan; Narasimha Reddy Parine

Objective. The aim of this study was to investigate the role of APE1 Asp148Glu polymorphism in breast cancer progression in Saudi population. Methods. We examined the genetic variations (rs1130409) in the DNA base excision repair gene APE1 at codon 148 (Asp148Glu) and its association with breast cancer risk using genotypic assays and in silico structural as well as functional predictions. In silico structural analysis was performed with Asp148Glu allele and compared with the predicted native protein structure. The wild and mutant 3D structures of APE1 were compared and analyzed using solvent accessibility models for protein stability confirmation. Results. Genotypic analysis of APE1 (rs1130409) showed statistically significant association of Asp148Glu with elevated susceptibility to breast cancer. The in silico analysis results indicated that the nsSNP Asp148Glu may cause changes in the protein structure and is associated with breast cancer risk. Conclusion. Taken together, this is the first report that established that Asp148Glu variant has structural and functional effect on the APE1 and may play an important role in breast cancer progression in Saudi population.

Collaboration


Dive into the Wajahatullah Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge