Mohamed R. Habib
Theodor Bilharz Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohamed R. Habib.
Memorias Do Instituto Oswaldo Cruz | 2012
Azza H. Mohamed; Ahmed T. Sharaf El-Din; A. M. Mohamed; Mohamed R. Habib
In the present study, Biomphalaria snails collected from five Egyptian governorates (Giza, Fayoum, Kafr El-Sheikh, Ismailia and Damietta), as well as reference control Biomphalaria alexandrina snails from the Schistosome Biological Supply Center (SBSC) (Theodor Bilharz Research Institute, Egypt), were subjected to species-specific polymerase chain reaction (PCR) assays to identify the collected species. All of the collected snails were found to be B. alexandrina and there was no evidence of the presence of Biomphalaria glabrata. Randomly amplified polymorphic DNA (RAPD)-PCR assays showed different fingerprints with varying numbers of bands for the first generation (F₁) of B. alexandrina snail populations (SBSC, Giza, Fayoum, Kafr El-Sheikh, Ismailia and Damietta). The primer OPA-1 produced the highest level of polymorphism and amplified the greatest number of specific bands. The estimated similarity coefficients among the B. alexandrina populations based on the RAPD-PCR profiles ranged from 0.56 (between SBSC and Ismailia snails) to 0.72 (between Ismailia and Kafr El-Sheikh snails). Experimental infection of the F₁ of progeny from the collected snails with Schistosoma mansoni (SBSC strain) showed variable susceptibility rates ranging from 15% in the Fayoum snail group to 50.3% in SBSC snails. A negative correlation was observed between the infection rates in the different snail groups and the distances separating their corresponding governorates from the parasite source. The infection rates of the snail groups and their similarity coefficients with SBSC B. alexandrina snails were positively correlated. The variations in the rates of infection of different B. alexandrina groups with S. mansoni, as well as the differences in the similarity coefficients among these snails, are dependent not only on the geographical distribution of the snails and the parasite, but also on the genetic variability of the snails. Introduction of this variability into endemic areas may reduce the ability of the parasite to infect local hosts and consequently reduce schistosomiasis epidemiology.
PLOS ONE | 2015
Mohamed R. Habib; Azza H. Mohamed; Gamalat Y. Osman; Ahmed T. Sharaf El-Din; Hanan S. Mossalem; Nadia Delgado; Grace Torres; Solymar Rolón-Martínez; Mark W. Miller; Roger P. Croll
Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites.
Journal of Bacteriology & Parasitology | 2011
Azza H. Mohamed; A.T. Sharaf El-Din; A. M. Mohamed; Mohamed R. Habib
Snails’ susceptibilities to infection with Schistosoma mansoni were determined through observation of infection rates, total cercarial production and tissue responses of the first generation (F 1 ) of Biomphalaria alexandrina snails originally collected from different Egyptian governorates (Giza, Fayoum, Kafr El-Sheikh, Ismailia and Damietta). B. alexandrina snails from Schistosome Biological Supply Center (SBSC, TBRI), Giza, Egypt were used as a reference control group. S. mansoni miracidia from SBSC were used for snail infection. Snails’ responses towards penetrating S. mansoni miracidia were compared between groups. The emergence of cercariae for a three-month period and the calculation of survival and infection rates, in control (Schistosome Biological Supply Center-SBSC) and infected snails were evaluated. The results indicated SBSC and Giza snails showed a greater susceptibility to infection and lower mortality rates. In addition, at 6 and 72 hrs post-exposure to miracidia all the snail groups showed no difference in the anatomical locations of sporocysts. The larvae were found in the head-foot, the mantle collar and the tentacles of the snails. Sporocysts showed normal development with low tissue reactions in SBSC and Giza snail groups infected with S. mansoni miracidia (Giza origin). However, in Fayoum, Kafr El-Sheikh, Ismailia and Damietta snail groups, variable tissue responses were observed in which numerous hemocytes made direct contact with S. mansoni larvae forming capsules. The results suggested that, different responses of B. alexandrina snail’s hemocytes towards S. mansoni are related to the degree of susceptibility of these snails. So this is important in planning the strategy of schistosomiasis control.
The Journal of Comparative Neurology | 2018
Lee O. Vaasjo; Alexandra M. Quintana; Mohamed R. Habib; Paola A. Mendez de Jesus; Roger P. Croll; Mark W. Miller
The simpler nervous systems of certain invertebrates provide opportunities to examine colocalized classical neurotransmitters in the context of identified neurons and well defined neural circuits. This study examined the distribution of γ‐aminobutyric acid‐like immunoreactivity (GABAli) in the nervous system of the panpulmonates Biomphalaria glabrata and Biomphalaria alexandrina, major intermediate hosts for intestinal schistosomiasis. GABAli neurons were localized in the cerebral, pedal, and buccal ganglia of each species. With the exception of a projection to the base of the tentacle, GABAli fibers were confined to the CNS. As GABAli was previously reported to be colocalized with markers for dopamine (DA) in five neurons in the feeding network of the euopisthobranch gastropod Aplysia californica (Díaz‐Ríos, Oyola, & Miller, 2002), double‐labeling protocols were used to compare the distribution of GABAli with tyrosine hydroxylase immunoreactivity (THli). As in Aplysia, GABAli‐THli colocalization was limited to five neurons, all of which were located in the buccal ganglion. Five GABAli‐THli cells were also observed in the buccal ganglia of two other intensively studied panpulmonate species, Lymnaea stagnalis and Helisoma trivolvis. These findings indicate that colocalization of the classical neurotransmitters GABA and DA in feeding central pattern generator (CPG) interneurons preceded the divergence of euopisthobranch and panpulmonate taxa. These observations also support the hypothesis that heterogastropod feeding CPG networks exhibit a common universal design.
Chemosphere | 2016
Mohamed R. Habib; Azza H. Mohamed; Gamalat Y. Osman; Hanan S. Mossalem; Ahmed T. Sharaf El-Din; Roger P. Croll
Experimental Parasitology | 2011
Azza H. Mohamed; Ahmed T. Sharaf El-Din; A. M. Mohamed; Mohamed R. Habib
Folia Malacologica | 2018
Hanan S. Mossalem; Mohamed R. Habib; Mosad A. Ghareeb
BMC Research Notes | 2017
Tamer Mansour; Mohamed R. Habib; Laura C. Vicente Rodríguez; Anthony Hernández Vázquez; Julián Maldonado Alers; Alfredo Ghezzi; Roger P. Croll; C. Titus Brown; Mark W. Miller
American Journal of Molecular Biology | 2011
A. M. Mohamed; A. T. Sharaf El-Din; Azza H. Mohamed; Mohamed R. Habib
Egyptian journal of aquatic biology and fisheries | 2018
Kadria M. A. Mahmoud; Sara S. M. Sayed; Mohamed R. Habib