Mohammad Hammoudeh
Manchester Metropolitan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammad Hammoudeh.
Information Fusion | 2015
Mohammad Hammoudeh; Robert M. Newman
Abstract One of the key challenges for research in wireless sensor networks is the development of routing protocols that provide application-specific service guarantees. This paper presents a new cluster-based Route Optimisation and Load-balancing protocol, called ROL, that uses various Quality of Service (QoS) metrics to meet application requirements. ROL combines several application requirements, specifically it attempts to provide an inclusive solution to prolong network life, provide timely message delivery and improve network robustness. It uses a combination of routing metrics that can be configured according to the priorities of user-level applications to improve overall network performance. To this end, an optimisation tool for balancing the communication resources for the constraints and priorities of user applications has been developed and Nutrient-flow-based Distributed Clustering (NDC), an algorithm for load balancing is proposed. NDC works seamlessly with any clustering algorithm to equalise, as far as possible, the diameter and the membership of clusters. This paper presents simulation results to show that ROL/NDC gives a higher network lifetime than other similar schemes, such Mires++. In simulation, ROL/NDC maintains a maximum of 7% variation from the optimal cluster population, reduces the total number of set-up messages by up to 60%, reduces the end-to-end delay by up to 56%, and enhances the data delivery ratio by up to 0.98% compared to Mires++.
Computer Networks | 2017
Abdelrahman Abuarqoub; Mohammad Hammoudeh; Bamidele Adebisi; Sohail Jabbar; Ahcène Bounceur; Hashem Al-Bashar
In Wireless Sensor Networks (WSNs), routing data towards the sink leads to unbalanced energy consumption among intermediate nodes resulting in high data loss rate. The use of multiple Mobile Data Collectors (MDCs) has been proposed in the literature to mitigate such problems. MDCs help to achieve uniform energy-consumption across the network, fill coverage gaps, and reduce end-to-end communication delays, amongst others. However, mechanisms to support MDCs such as location advertisement and route maintenance introduce significant overhead in terms of energy consumption and packet delays. In this paper, we propose a self-organizing and adaptive Dynamic Clustering (DCMDC) solution to maintain MDC-relay networks. This solution is based on dividing the network into well-delimited clusters called Service Zones (SZs). Localizing mobility management traffic to a SZ reduces signaling overhead, route setup delay and bandwidth utilization. Network clustering also helps to achieve scalability and load balancing. Smaller network clusters make buffer overflows and energy depletion less of a problem. These performance gains are expected to support achieving higher information completeness and availability as well as maximizing the network lifetime. Moreover, maintaining continuous connectivity between the MDC and sensor nodes increases information availability and validity. Performance experiments show that DCMDC outperforms its rival in the literature. Besides the improved quality of information, the proposed approach improves the packet delivery ratio by up to 10%, end-to-end delay by up to 15%, energy consumption by up to 53%, energy balancing by up to 51%, and prolongs the network lifetime by up to53%.
IEEE Sensors Journal | 2017
Mohammad Hammoudeh; Fayez Alfayez; Huw Lloyd; Robert M. Newman; Bamidele Adebisi; Ahcène Bounceur; Abdelrahman Abuarqoub
External border surveillance is critical to the security of every state and the challenges it poses are changing and likely to intensify. Wireless sensor networks (WSN) are a low cost technology that provide an intelligence-led solution to effective continuous monitoring of large, busy, and complex landscapes. The linear network topology resulting from the structure of the monitored area raises challenges that have not been adequately addressed in the literature to date. In this paper, we identify an appropriate metric to measure the quality of WSN border crossing detection. Furthermore, we propose a method to calculate the required number of sensor nodes to deploy in order to achieve a specified level of coverage according to the chosen metric in a given belt region, while maintaining radio connectivity within the network. Then, we contribute a novel cross layer routing protocol, called levels division graph (LDG), designed specifically to address the communication needs and link reliability for topologically linear WSN applications. The performance of the proposed protocol is extensively evaluated in simulations using realistic conditions and parameters. LDG simulation results show significant performance gains when compared with its best rival in the literature, dynamic source routing (DSR). Compared with DSR, LDG improves the average end-to-end delays by up to 95%, packet delivery ratio by up to 20%, and throughput by up to 60%, while maintaining comparable performance in terms of normalized routing load and energy consumption.
Sensors | 2015
Mohammad Hammoudeh; Robert M. Newman; Christopher Dennett; Sarah Mount; Omar Aldabbas
This paper presents a distributed information extraction and visualisation service, called the mapping service, for maximising information return from large-scale wireless sensor networks. Such a service would greatly simplify the production of higher-level, information-rich, representations suitable for informing other network services and the delivery of field information visualisations. The mapping service utilises a blend of inductive and deductive models to map sense data accurately using externally available knowledge. It utilises the special characteristics of the application domain to render visualisations in a map format that are a precise reflection of the concrete reality. This service is suitable for visualising an arbitrary number of sense modalities. It is capable of visualising from multiple independent types of the sense data to overcome the limitations of generating visualisations from a single type of sense modality. Furthermore, the mapping service responds dynamically to changes in the environmental conditions, which may affect the visualisation performance by continuously updating the application domain model in a distributed manner. Finally, a distributed self-adaptation function is proposed with the goal of saving more power and generating more accurate data visualisation. We conduct comprehensive experimentation to evaluate the performance of our mapping service and show that it achieves low communication overhead, produces maps of high fidelity, and further minimises the mapping predictive error dynamically through integrating the application domain model in the mapping service.
international conference on sensor technologies and applications | 2007
Mohammad Hammoudeh; Alexander Kurz; Elena Gaura
This paper proposes a self-organizing, cluster based protocol - multi-path, multi-hop hierarchical routing (MuMHR) - for use in large scale, distributed wireless sensor networks (WSN). With MuMHR, robustness is achieved by each node learning multiple paths and election of cluster-head backup node(s). Energy expenditure is reduced by shortening the distance between the node and its cluster-head and by reducing the setup communication overhead. This is done through incorporating the number-of-hops metric in addition to the back-off waiting time. Simulation results show that MuMHR performs better than LEACH, which is the most promising hierarchical routing algorithm to date; MuMHR reduces the total number of set-up messages by up to 65% and enhances the data delivery ratio by up to 0.83.
NEW2AN | 2012
Abdelrahman Abuarqoub; Mohammad Hammoudeh; Tariq A. A. Alsboui
Information Extraction (IE) is a key research area within the field of Wireless Sensor Networks (WSNs). It has been characterised in a variety of ways, ranging from the description of its purposes, to reasonably abstract models of its processes and components. There has been only a handful of papers addressing IE over mobile WSNs directly, these dealt with individual mobility related problems as the need arises. This paper is presented as a tutorial that takes the reader from the point of identifying data about a dynamic (mobile) real world problem, relating the data back to the world from which it was collected, and finally discovering what is in the data. It covers the entire process with special emphasis on how to exploit mobility in maximising information return from a mobile WSN. We present some challenges introduced by mobility on the IE process as well as its effects on the quality of the extracted information. Finally, we identify future research directions facing the development of efficient IE approaches for WSNs in the presence of mobility.
Information Fusion | 2015
Mohammad Hammoudeh; Robert M. Newman
Abstract Wireless sensor networks are an effective tool to provide fine resolution monitoring of the physical environment. Sensors generate continuous streams of data, which leads to several computational challenges. As sensor nodes become increasingly active devices, with more processing and communication resources, various methods of distributed data processing and sharing become feasible. The challenge is to extract information from the gathered sensory data with a specified level of accuracy in a timely and power-efficient approach. This paper presents a new solution to distributed information extraction that makes use of the morphological Watershed algorithm. The Watershed algorithm dynamically groups sensor nodes into homogeneous network segments with respect to their topological relationships and their sensing-states. This setting allows network programmers to manipulate groups of spatially distributed data streams instead of individual nodes. This is achieved by using network segments as programming abstractions on which various query processes can be executed. Aiming at this purpose, we present a reformulation of the global Watershed algorithm. The modified Watershed algorithm is fully asynchronous, where sensor nodes can autonomously process their local data in parallel and in collaboration with neighbouring nodes. Experimental evaluation shows that the presented solution is able to considerably reduce query resolution cost without scarifying the quality of the returned results. When compared to similar purpose schemes, such as “Logical Neighborhood”, the proposed approach reduces the total query resolution overhead by up to 57.5%, reduces the number of nodes involved in query resolution by up to 59%, and reduces the setup convergence time by up to 65.1%.
Wireless Communications and Mobile Computing | 2013
Mohammad Hammoudeh; Robert M. Newman; Christopher Dennett; Sarah Mount
Wireless sensor networks (WSNs) typically gather data at a discrete number of locations. However, it is desirable to be able to design applications and reason about the data in more abstract forms than in points of data. By bestowing the ability to predict inter-node values upon the network, it is proposed that it will become possible to build applications that are unaware of the concrete reality of sparse data. This interpolation capability is realised as a service of the network. In this paper, the ‘map’ style of presentation has been identified as a suitable sense data visualisation format. Although map generation is essentially a problem of interpolation between points, a new WSN service, called the map generation service, which is based on a Shepard interpolation method, is presented. A modified Shepard method that aims to deal with the special characteristics of WSNs is proposed. It requires small storage, can be localised and integrates the information about the application domain to further reduce the map generation cost and improve the mapping accuracy. Empirical analysis has shown that the map generation service is an accurate, a flexible and an efficient method. Copyright
international conference on networked sensing systems | 2007
James Shuttleworth; Mohammad Hammoudeh; Elena Gaura; Robert M. Newman
Wireless sensor networks typically gather data at a number of locations. However, it is desirable to be able to design applications and reason about the data in more abstract forms than points of data. This paper examines one way in which this can be done. By bestowing the ability to predict inter-node values upon the network, it is proposed that it will become possible to build applications that are unaware of the concrete reality of sparse data. This interpolation capability is realised as a service of the network. We present an implementation of this service and discuss its merits and shortcomings. Additionally, we present an initial application of the service in the form of isopleth generation. That is, the delineation of contours of constant parameter value. Finally, we discuss the improvements required to create more sophisticated applications and services and examine the benefits these improvements would bring.
International Journal of Advanced Computer Science and Applications | 2015
Andrew Carlin; Mohammad Hammoudeh; Omar Aldabbas
Clouds are distributed Internet-based platforms that provide highly resilient and scalable environments to be used by enterprises in a multitude of ways. Cloud computing offers enterprises technology innovation that business leaders and IT infrastructure managers can choose to apply based on how and to what extent it helps them fulfil their business requirements. It is crucial that all technical consultants have a rigorous understanding of the ramifications of cloud computing as its influence is likely to spread the complete IT landscape. Security is one of the major concerns that is of practical interest to decision makers when they are making critical strategic operational decisions. Distributed Denial of Service (DDoS) attacks are becoming more frequent and effective over the past few years, since the widely publicised DDoS attacks on the financial services industry that came to light in September and October 2012 and resurfaced in the past two years. In this paper, we introduce advanced cloud security technologies and practices as a series of concepts and technology architectures, from an industry-centric point of view. This is followed by classification of intrusion detection and prevention mechanisms that can be part of an overall strategy to help understand identify and mitigate potential DDoS attacks on business networks. The paper establishes solid coverage of security issues related to DDoS and virtualisation with a focus on structure, clarity, and well-defined blocks for mainstream cloud computing security solutions and platforms. In doing so, we aim to provide industry technologists, who may not be necessarily cloud or security experts, with an effective tool to help them understand the security implications associated with cloud adoption in their transition towards more knowledge-based systems.