Robert M. Newman
University of Wolverhampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert M. Newman.
Design Studies | 2003
Michael Tovey; S. Porter; Robert M. Newman
Abstract Sketching and its key role in concept design are identified, and the particular circumstances of automotive design described. A brief summary of work in the general field of concept sketching and visual thinking is presented. The particular characteristics of automotive design sketches; form lines, crown lines, area lines, shading and colouring are described, and a de-layering analysis undertaken. This demonstrates the primacy of form lines in the automotive design sketch. Observations, by video, of post-graduate students and six professional designers while sketching confirm the importance of the form lines in the design process, the interactive and iterative nature of concept development and the central role of the activity of sketching in this process. It is proposed that the design of CAD systems to support concept development must take account of the importance of sketching activity.
Information Fusion | 2015
Mohammad Hammoudeh; Robert M. Newman
Abstract One of the key challenges for research in wireless sensor networks is the development of routing protocols that provide application-specific service guarantees. This paper presents a new cluster-based Route Optimisation and Load-balancing protocol, called ROL, that uses various Quality of Service (QoS) metrics to meet application requirements. ROL combines several application requirements, specifically it attempts to provide an inclusive solution to prolong network life, provide timely message delivery and improve network robustness. It uses a combination of routing metrics that can be configured according to the priorities of user-level applications to improve overall network performance. To this end, an optimisation tool for balancing the communication resources for the constraints and priorities of user applications has been developed and Nutrient-flow-based Distributed Clustering (NDC), an algorithm for load balancing is proposed. NDC works seamlessly with any clustering algorithm to equalise, as far as possible, the diameter and the membership of clusters. This paper presents simulation results to show that ROL/NDC gives a higher network lifetime than other similar schemes, such Mires++. In simulation, ROL/NDC maintains a maximum of 7% variation from the optimal cluster population, reduces the total number of set-up messages by up to 60%, reduces the end-to-end delay by up to 56%, and enhances the data delivery ratio by up to 0.98% compared to Mires++.
international conference on modelling and simulation | 2006
Elena Gaura; Robert M. Newman
Markets and Applications Microfabrication Technologies Sensor Electronics Sensor Signal Enhancement Case Study: Control Systems for Capacitive Inertial Sensors Case Study: Adaptive Optics and Smart VLSI/MEMS Systems Artificial Intelligence Techniques for Microsensors Identification and Compensation Smart, Intelligent and Cogent MEMS Based Sensors Sensor Arrays and Networks Wireless and Ad Hoc Sensor Networks Realising the Dream -- A Case Study.
IEEE Sensors Journal | 2017
Mohammad Hammoudeh; Fayez Alfayez; Huw Lloyd; Robert M. Newman; Bamidele Adebisi; Ahcène Bounceur; Abdelrahman Abuarqoub
External border surveillance is critical to the security of every state and the challenges it poses are changing and likely to intensify. Wireless sensor networks (WSN) are a low cost technology that provide an intelligence-led solution to effective continuous monitoring of large, busy, and complex landscapes. The linear network topology resulting from the structure of the monitored area raises challenges that have not been adequately addressed in the literature to date. In this paper, we identify an appropriate metric to measure the quality of WSN border crossing detection. Furthermore, we propose a method to calculate the required number of sensor nodes to deploy in order to achieve a specified level of coverage according to the chosen metric in a given belt region, while maintaining radio connectivity within the network. Then, we contribute a novel cross layer routing protocol, called levels division graph (LDG), designed specifically to address the communication needs and link reliability for topologically linear WSN applications. The performance of the proposed protocol is extensively evaluated in simulations using realistic conditions and parameters. LDG simulation results show significant performance gains when compared with its best rival in the literature, dynamic source routing (DSR). Compared with DSR, LDG improves the average end-to-end delays by up to 95%, packet delivery ratio by up to 20%, and throughput by up to 60%, while maintaining comparable performance in terms of normalized routing load and energy consumption.
Sensors | 2015
Mohammad Hammoudeh; Robert M. Newman; Christopher Dennett; Sarah Mount; Omar Aldabbas
This paper presents a distributed information extraction and visualisation service, called the mapping service, for maximising information return from large-scale wireless sensor networks. Such a service would greatly simplify the production of higher-level, information-rich, representations suitable for informing other network services and the delivery of field information visualisations. The mapping service utilises a blend of inductive and deductive models to map sense data accurately using externally available knowledge. It utilises the special characteristics of the application domain to render visualisations in a map format that are a precise reflection of the concrete reality. This service is suitable for visualising an arbitrary number of sense modalities. It is capable of visualising from multiple independent types of the sense data to overcome the limitations of generating visualisations from a single type of sense modality. Furthermore, the mapping service responds dynamically to changes in the environmental conditions, which may affect the visualisation performance by continuously updating the application domain model in a distributed manner. Finally, a distributed self-adaptation function is proposed with the goal of saving more power and generating more accurate data visualisation. We conduct comprehensive experimentation to evaluate the performance of our mapping service and show that it achieves low communication overhead, produces maps of high fidelity, and further minimises the mapping predictive error dynamically through integrating the application domain model in the mapping service.
Information Fusion | 2015
Mohammad Hammoudeh; Robert M. Newman
Abstract Wireless sensor networks are an effective tool to provide fine resolution monitoring of the physical environment. Sensors generate continuous streams of data, which leads to several computational challenges. As sensor nodes become increasingly active devices, with more processing and communication resources, various methods of distributed data processing and sharing become feasible. The challenge is to extract information from the gathered sensory data with a specified level of accuracy in a timely and power-efficient approach. This paper presents a new solution to distributed information extraction that makes use of the morphological Watershed algorithm. The Watershed algorithm dynamically groups sensor nodes into homogeneous network segments with respect to their topological relationships and their sensing-states. This setting allows network programmers to manipulate groups of spatially distributed data streams instead of individual nodes. This is achieved by using network segments as programming abstractions on which various query processes can be executed. Aiming at this purpose, we present a reformulation of the global Watershed algorithm. The modified Watershed algorithm is fully asynchronous, where sensor nodes can autonomously process their local data in parallel and in collaboration with neighbouring nodes. Experimental evaluation shows that the presented solution is able to considerably reduce query resolution cost without scarifying the quality of the returned results. When compared to similar purpose schemes, such as “Logical Neighborhood”, the proposed approach reduces the total query resolution overhead by up to 57.5%, reduces the number of nodes involved in query resolution by up to 59%, and reduces the setup convergence time by up to 65.1%.
Wireless Communications and Mobile Computing | 2013
Mohammad Hammoudeh; Robert M. Newman; Christopher Dennett; Sarah Mount
Wireless sensor networks (WSNs) typically gather data at a discrete number of locations. However, it is desirable to be able to design applications and reason about the data in more abstract forms than in points of data. By bestowing the ability to predict inter-node values upon the network, it is proposed that it will become possible to build applications that are unaware of the concrete reality of sparse data. This interpolation capability is realised as a service of the network. In this paper, the ‘map’ style of presentation has been identified as a suitable sense data visualisation format. Although map generation is essentially a problem of interpolation between points, a new WSN service, called the map generation service, which is based on a Shepard interpolation method, is presented. A modified Shepard method that aims to deal with the special characteristics of WSNs is proposed. It requires small storage, can be localised and integrates the information about the application domain to further reduce the map generation cost and improve the mapping accuracy. Empirical analysis has shown that the map generation service is an accurate, a flexible and an efficient method. Copyright
international conference on design of communication | 2007
Fotis Liarokapis; Robert M. Newman
This paper presents an overview of the most significant issues when designing mixed reality interfaces including displays, tracking, interface design, interactivity and realism. Multimodal issues regarding visualization and interaction are integrated into a single interface. Three case studies in diverse areas including automotive, archaeology and navigation are presented illustrating the use of the above issues addressed. Furthermore, the experiences gained and lessons learned are discussed including our plans for future work.
international conference on networked sensing systems | 2007
James Shuttleworth; Mohammad Hammoudeh; Elena Gaura; Robert M. Newman
Wireless sensor networks typically gather data at a number of locations. However, it is desirable to be able to design applications and reason about the data in more abstract forms than points of data. This paper examines one way in which this can be done. By bestowing the ability to predict inter-node values upon the network, it is proposed that it will become possible to build applications that are unaware of the concrete reality of sparse data. This interpolation capability is realised as a service of the network. We present an implementation of this service and discuss its merits and shortcomings. Additionally, we present an initial application of the service in the form of isopleth generation. That is, the delineation of contours of constant parameter value. Finally, we discuss the improvements required to create more sophisticated applications and services and examine the benefits these improvements would bring.
ambient intelligence | 2005
Sarah Mount; Elena Gaura; Robert M. Newman; Alastair R. Beresford; Sam R. Dolan; Michael Allen
This paper describes Trove, a physical game implemented on a wireless sensor network (WSN). Architecturally, the WSN is a decentralized system, exhibiting local node processing and information extraction, collaborative inter-node behaviour and local decision making capabilities. From the perspective of the players, Trove is a multi-player, real time, physical game. The user-centered narrative, configuration and game play of Trove ate presented as well as its design and implementation.Trove will be used at Coventry University as a pedagogical aid in under- and postgraduate modules which incorporate concepts from pervasive computing and sensor networks; and also for the dissemination of research work to members of the public. Although educational through its use, the work presented here concerns, from a technical viewpoint, the very specifics of physical WSN design, implementation and deployment and forms a good basis for further proof of concept experimentation within the domain.