Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Haque is active.

Publication


Featured researches published by Mohammad Haque.


Frontiers in Oncology | 2014

Utilizing regulatory T cells against rheumatoid arthritis

Mohammad Haque; Kristin Fino; Fengyang Lei; Xiaofang Xiong; Jianxun Song

Regulatory T (Treg) cells are essential for normal immune surveillance systems, and their dysfunction leads to development of diseases, such as autoimmune disorders. CD4+CD25+ Treg cells are well-known suppressive cells, which express the transcription factor Foxp3, are indispensable for the maintenance of immune self-tolerance and homeostasis by suppressing aberrant or excessive immune response. Other Foxp3− Treg cells include Tr1, Th3, CD8+CD28−/−, and Qa1-restricted T cells; however, the contribution of these Treg cells to self-tolerance, immune homeostasis as well as preventing autoimmunity is not well defined. Here, we discuss the phenotypes and function of Foxp3+ Treg cells and the potential use of such Treg cells against rheumatoid arthritis (RA). Of note, even though most expanded populations of Foxp3+ Treg cells exhibit suppressive activity, tissue-associated or antigen-specific Treg cells appear superior in suppressing local autoimmune disorders such as RA. In addition, utilizing tissue-associated Foxp3+ Treg cells from stem cells may stable Foxp3 expression and avoid induction of a potentially detrimental systemic immunosuppression.


PLOS ONE | 2013

Regulation of A1 by OX40 Contributes to CD8+ T Cell Survival and Anti-Tumor Activity

Fengyang Lei; Jianyong Song; Rizwanul Haque; Mohammad Haque; Xiaofang Xiong; Deyu Fang; Michael Croft; Jianxun Song

The TNFR family member OX40 (CD134) is critical for optimal clonal expansion and survival of T cells. However, the intracellular targets of OX40 in CD8 T cells are not fully understood. Here we show that A1, a Bcl-2 family protein, is regulated by OX40 in effector CD8 T cells. In contrast to wild-type T cells, OX40-deficient CD8 T cells failed to maintain A1 expression driven by antigen. Conversely, enforced OX40 stimulation promoted A1 expression. In both situations, the expression of A1 directly correlated with CD8 T cell survival. In addition, exogenous expression of A1 in OX40-deficient CD8 T cells reversed their survival defect in vitro and in vivo. Moreover, forced expression of A1 in CD8 T cells from OX40-deficient mice restored the ability of these T cells to suppress tumor growth in a murine model. These results indicate that OX40 signals regulate CD8 T cell survival at least in part through maintaining expression of the anti-apoptotic molecule A1, and provide new insight into the mechanism by which OX40 may impact anti-tumor immunity.


Scientific Reports | 2016

Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity.

Mohammad Haque; Jianyong Song; Kristin Fino; Praneet Sandhu; Xinmeng Song; Fengyang Lei; Song Guo Zheng; Bing Ni; Deyu Fang; Jianxun Song

Pluripotent stem cells (PSCs) have the potential to produce almost all of the cells in the body, including regulatory T cells (Tregs). However, the exact conditions required for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) are not well delineated. Ag-specific PSC-Tregs can be tissue/organ-associated and migrate to local inflamed tissues/organs to suppress the autoimmune response after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. In this study, we developed a new approach to generate functional Ag-specific Tregs from induced PSCs (iPSCs), i.e., iPSC-Tregs, which had the ability to generate an Ag-specific immunosuppressive response in a murine model of arthritis. We retrovirally transduced murine iPSCs with a construct containing genes of Ag-specific T cell receptor (TCR) and the transcriptional factor FoxP3. We differentiated the iPSCs into Ag-specific iPSC-Tregs using in vitro or in vivo Notch signaling, and demonstrated that adoptive transfer of such Tregs dramatically suppressed autoimmunity in a well-established Ag-induced arthritis model, including the inflammation, joint destruction, cartilage prostaglandin depletion, osteoclast activity, and Th17 production. Our results indicate that PSCs can be used to develop Ag-specific Tregs, which have a therapeutic potential for Treg-based therapies of autoimmune disorders.


Open Biology | 2016

C-Myc regulation by costimulatory signals modulates the generation of CD8 + memory T cells during viral infection

Mohammad Haque; Jianyong Song; Kristin Fino; Youfei Wang; Praneet Sandhu; Xinmeng Song; Christopher C. Norbury; Bing Ni; Deyu Fang; Shahram Salek-Ardakani; Jianxun Song

The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8+ T cells is controlled by costimulatory molecules, which modulates the development of memory CD8+ T cells. C-Myc expression was dramatically reduced in Cd28−/− or Ox40−/− memory CD8+ T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8+ T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28−/− or Ox40−/− CD8+ T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8+ T cells from costimulatory signals.


Cell Transplantation | 2016

Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells.

Mohammad Haque; Jianyong Song; Kristin Fino; Praneet Sandhu; Youfei Wang; Bing Ni; Deyu Fang; Jianxun Song

Adoptive cell transfer (ACT) of antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) is a highly promising treatment for a variety of diseases. Naive or central memory T-cell-derived effector CTLs are optimal populations for ACT-based immunotherapy because these cells have a high proliferative potential, are less prone to apoptosis than terminally differentiated cells, and have the higher ability to respond to homeostatic cytokines. However, such ACT with T-cell persistence is often not feasible due to difficulties in obtaining sufficient cells from patients. Here we present that in vitro differentiated HSCs of engineered PSCs can develop in vivo into tumor Ag-specific naive CTLs, which efficiently suppress melanoma growth. Mouse-induced PSCs (iPSCs) were retrovirally transduced with a construct encoding chicken ovalbumin (OVA)-specific T-cell receptors (TCRs) and survival-related proteins (i.e., BCL-xL and survivin). The gene-transduced iPSCs were cultured on the delta-like ligand 1-expressing OP9 (OP9-DL1) murine stromal cells in the presence of murine recombinant cytokines (rFlt3L and rIL-7) for a week. These iPSC-derived cells were then intravenously adoptively transferred into recipient mice, followed by intraperitoneal injection with an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7). Two weeks later, naive OVA-specific CD8+ T cells were observed in the mouse peripheral lymphatic system, which were responsive to OVA-specific stimulation. Moreover, the mice were resistant to the challenge of B16-OVA melanoma induction. These results indicate that genetically modified stem cells may be used for ACT-based immunotherapy or serve as potential vaccines.


Frontiers in Immunology | 2017

Hepatitis B Virus Immunopathology, Model Systems, and Current Therapies

Praneet Sandhu; Mohammad Haque; Tessa Humphries-Bickley; Swetha Ravi; Jianxun Song

Most people develop acute hepatitis B virus (HBV)-related hepatitis that is controlled by both humoral and cellular immune responses following acute infection. However, a number of individuals in HBV-endemic areas fail to resolve the infection and consequently become chronic carriers. While a vaccine is available and new antiviral drugs are being developed, elimination of persistently infected cells is still a major issue. Standard treatment in HBV infection includes IFN-α, nucleoside, or nucleotide analogs, which has direct antiviral activity and immune modulatory capacities. However, immunological control of the virus is often not durable. A robust T-cell response is associated with control of HBV infection and liver damage; however, HBV-specific T cells are deleted, dysfunctional, or become exhausted in chronic hepatitis patients. As a result, efforts to restore virus-specific T-cell immunity in chronic HBV patients using antiviral therapy, immunomodulatory cytokines, or therapeutic vaccination have had little success. Adoptive cell transfer of T cells with specificity for HBV antigen+ cells represents an approach aiming to ultimately eliminate residual hepatocytes carrying HBV covalently closed circular DNA (cccDNA). Here, we discuss recent findings describing HBV immunopathology, model systems, and current therapies.


Genes | 2017

C‐Myc‐induced survivin is essential for promoting the Notch-dependent t cell differentiation from hematopoietic stem cells

Rizwanul Haque; Jianyong Song; Mohammad Haque; Fengyang Lei; Praneet Sandhu; Bing Ni; Song Guo Zheng; Deyu Fang; Jin-Ming Yang; Jianxun Song

Notch is indispensable for T cell lineage commitment, and is needed for thymocyte differentiation at early phases. During early stages of T cell development, active Notch prevents other lineage potentials including B cell lineage and myeloid cell (e.g., dendritic cell) lineage. Nevertheless, the precise intracellular signaling pathways by which Notch promotes T cell differentiation remain unclear. Here we report that the transcription factor c-Myc is a key mediator of the Notch signaling–regulated T cell differentiation. In a well-established in vitro differentiation model of T lymphocytes from hematopoietic stem cells, we showed that Notch1 and 4 directly promoted c-Myc expression; dominant-negative (DN) c-Myc inhibited early T cell differentiation. Moreover, the c-Myc expression activated by Notch signaling increased the expression of survivin, an inhibitor of apoptosis (IAP) protein. We further demonstrated that over-expression of c-Myc increased the abundance of survivin and the T cell differentiation thereof, whereas dn c-Myc reduced survivin levels and concomitantly retarded the differentiation. The c-Myc–dependent survivin induction is functionally germane, because Notch-dependent T cell differentiation was canceled by the depletion of survivin. These results identify both c-Myc and survivin as important mediators of the Notch signaling–regulated differentiation of T lymphocytes from hematopoietic stem cells.


OncoImmunology | 2017

Development and characterization of naive single-type tumor antigen-specific CD8+ T lymphocytes from murine pluripotent stem cells

Fengyang Lei; Mohammad Haque; Praneet Sandhu; Swetha Ravi; Jianyong Song; Bing Ni; Song Guo Zheng; Deyu Fang; Hongyan Jia; Jin-Ming Yang; Jianxun Song

ABSTRACT Optimal approaches to differentiate tumor antigen-specific cytotoxic T lymphocytes (CTLs) from pluripotent stem cells (PSCs) remain elusive. In the current study, we showed that combination of in vitro priming through Notch ligands and in vivo development facilitated the generation of tumor Ag-specific CTLs that effectively inhibited tumor growth. We co-cultured the murine induced PSCs (iPSCs) genetically modified with tyrosinase-related protein 2 (TRP2)-specific T cell receptors with OP9 cell line expressing both Notch ligands Delta-like 1 and 4 (OP9-DL1/DL4) for a week before adoptively transferred into recipient C67BL/6 mice. Three weeks later, B16 melanoma cells were inoculated subcutaneously, and the antitumor activity of the iPSC-derived T cells was assessed. We observed the development of the TRP2-specific iPSC-CD8+ T cells that responded to Ag stimulation and infiltrated into melanoma tissues, significantly inhibited the tumor growth, and improved the survival of the tumor-bearing mice. Thus, this approach may provide a novel effective strategy to treatment of malignant tumors.


Archive | 2017

Immunotherapy in Autoimmune Diabetes

Mohammad Haque; Praneet Sandhu; Swetha Ravi; Sravya Kurapati; Jianxun Song

Autoimmune diabetes is a chronic autoimmune disease caused by the loss or selective destruction of the insulin-producing cells, called pancreatic beta cells. Damage to beta cells results in an absence or insufficient production of insulin produced by the body. Most cases of autoimmune diabetes have an autoimmune basis, and the immune system mistakenly attacks and destroys beta cells. The immune system plays a critical role in controlling the development of autoimmune diabetes. Over the past years there have been significant progress and an accumulation of scientific evidence for the concept of immunotherapy. Immunotherapy for the prevention and treatment of autoimmune diabetes has become the main focus of the research community. Three regimens of immunotherapy have been investigated: (1) Antigen-specific vaccines: Insulin-related molecules have attracted great interest in vaccine development, including the whole recombinant human GAD65 (rhGAD65) and the DiaPep277 peptide of HSP60. (2) Systemic immunomodulators: A large number of non–antigen-specific immunomodulators have been studied, including monoclonal anti-CD3 antibody, anti–CTLA-4 Ig, TNF-a, IFN-a, IL-1R antagonist, regulatory T cells, and dendritic cells. (3) Combination treatments: Combination therapies have the ability to enhance efficacy and will become the standard of care for autoimmune diabetes. Development of safe and efficient prevention of autoimmune diabetes is a general public health object in modern countries now. Although large numbers of preventive modalities including immunotherapy have been accomplished in animal models of autoimmune diabetes, prevention of human autoimmune diabetes remains indefinable. Genetic and environmental factors that control the relapsing-remitting course of β-cell destruction, terminating in complete insulin addiction are being determined. In the long run, initial prevention of islet autoimmunity will likely be the optimal approach to the prevention of autoimmune diabetes. However, environmental causes of islet autoimmunity need to be well stated. Modest predictive assessment of the existing genetic screening tools also means that the number of children requiring intervention will stay great, concerning the number of autoimmune diabetes cases prohibited. Nevertheless, combination treatments are more likely to be used for autoimmune


Archive | 2016

Stem Cell-Derived Regulatory T Cells for Therapeutic Use

Mohammad Haque; Praneet Sandhu; Jianxun Song

CD4+ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead the development of autoimmune diseases. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat autoim‐ mune disorders as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)specific Tregs from PSCs (i.e., PSC-Tregs) have not been fully defined, especially the signaling mechanisms that the direct differentiation of such Tregs. Ag-specific PSCTregs can be tissue-associated and infiltrate to local inflamed tissue to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Development of cell-based therapies using Ag-specific PSC-Tregs will provide an important step toward personalized therapies for autoimmune disorders.

Collaboration


Dive into the Mohammad Haque's collaboration.

Top Co-Authors

Avatar

Jianxun Song

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Praneet Sandhu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kristin Fino

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Fengyang Lei

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Deyu Fang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Jianyong Song

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Bing Ni

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaofang Xiong

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Song Guo Zheng

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Swetha Ravi

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge