Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Husain is active.

Publication


Featured researches published by Mohammad Husain.


Journal of The American Society of Nephrology | 2002

HIV-1 Nef Induces Proliferation and Anchorage-Independent Growth in Podocytes

Mohammad Husain; G. Luca Gusella; Mary E. Klotman; Irwin H. Gelman; Elissa J. Schwartz; Andrea Cara; Paul E. Klotman

HIV-associated nephropathy (HIVAN) is now the third leading cause of end-stage renal disease in the African American population. HIV-1 infects renal tubular and glomerular epithelial cells or podocytes, cells that are a critical part of the filtration barrier. HIV-1 infection induces the loss of podocyte differentiation markers and increases podocyte proliferation. It has been previously shown that HIV-infection induces loss of contact inhibition. Here, the HIV-1 gene responsible for proliferative changes is identified by using cultured podocytes in vitro. The HIV-1 proviral construct, pNL4-3 was rendered noninfectious by replacing the HIV-1 gag/pol sequences with an EGFP reporter gene (pNL4-3: DeltaG/P-EGFP). This construct was then pseudotyped with VSV.G envelope to infect podocytes that were conditionally immortalized with SV-40 T antigen. In addition, mutated constructs were engineered with premature stop codons in the HIV-1 env, vif, vpr, vpu, nef, or rev genes. The parental construct and all the other mutated constructs, with the exception of nef, induced proliferation under nonpermissive conditions and anchorage-independent growth (colony formation in soft agar) under permissive conditions. In contrast, deletion of nef markedly reduced proliferation and colony formation. Although tat alone, or tat plus rev induced marginal levels of anchorage-independent growth, coexpression with nef significantly increased colony formation. Finally, stable expression of Nef in a retroviral vector, pBabe-puro, was sufficient to induce increased proliferation and colony formation. Moreover, nef induced saturation density and loss of contact inhibition. These data indicate that Nef induces multiple proliferative effects in podocytes in culture and that nef may therefore be an important gene in the pathogenesis of HIVAN in vivo.


Journal of Clinical Investigation | 2004

Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways

John Cijiang He; Mohammad Husain; Masaaki Sunamoto; Vivette D. D’Agati; Mary E. Klotman; Ravi Iyengar; Paul E. Klotman

In collapsing focal segmental glomerulosclerosis (FSGS) of HIV-associated nephropathy (HIVAN), podocytes exhibit a high proliferation rate and loss of differentiation markers. We have found previously that the nef gene of HIV-1 is responsible for these changes. Here, we investigated the signaling pathways induced by Nef and its role in the pathogenesis of HIVAN. Using conditionally immortalized podocytes after differentiation, we found that infection of podocytes with nef increased Src kinase activity and signal transducer and activator of transcription 3 (Stat3) phosphorylation and activated the Ras-c-Raf-MAPK1,2 pathway. A dominant negative mutant of Src abolished the Nef effect, whereas inhibition of MAPK1,2 or dominant negative Stat3 reduced Nef effects partially. Reducing the expression of Nef with small interference RNA reversed the Nef effect. Mutation of Nef in the PxxP or R105R106 motifs diminished Nef signaling and the phenotypic changes in podocytes. Both phospho-MAPK1,2 and phospho-Stat3 staining increased in podocytes of kidneys from HIV-1 transgenic mice compared with their littermates and in podocytes of kidneys from HIVAN patients compared with HIV patients with non-HIVAN kidney diseases or non-HIV patients with idiopathic FSGS, classic FSGS, or minimal-change disease. These data suggest that Nef-induced activation of Stat3 and Ras-MAPK1,2 via Src-dependent pathways is responsible for podocyte proliferation and dedifferentiation, a characteristic finding in collapsing FSGS of HIVAN.


AIDS | 2005

HIV-1 Nef induces dedifferentiation of podocytes in vivo: a characteristic feature of HIVAN.

Mohammad Husain; John Cijiang He; Mary E. Klotman; Paul E. Klotman

Objective:To determine the specific role of Nef in the pathogenesis of HIV-associated nephropathy. Design:Podocytes are highly differentiated non-dividing cells in the normal glomerulus, however, they undergo dedifferentiation and acquire a proliferative phenotype in HIVAN patients, in HIV-transgenic mice and if infected by HIV-1 in vitro. These changes are accompanied by loss of the maturation markers synaptopodin and WT1, and expression of the proliferation marker Ki-67. Previously, we mapped the gene responsible for these changes in vitro to HIV-1 Nef. To determine the role of Nef in vivo, we developed a transgenic mouse model in which Nef was exclusively expressed in podocytes. Methods:Transgenic mice were generated using a construct in which Nef expression was blocked by a floxed lacZ intervening gene. When crossed with another transgenic mice expressing Cre under the Podocin promoter (a podocyte specific gene), the intervening lacZ gene was removed activating the expression of Nef in podocytes. The in vivo expression profiles of the Nef, the proliferation marker Ki-67, the differentiation markers synaptopodin and WT1, and phospho-Stat3, were determined by immunohistochemistry. Results:Podocyte-specific expression of Nef induced loss of synaptopodin and WT1, and expression of Ki-67 in podocytes. Furthermore, Nef activated expression of phospho-Stat3, one of the downstream signaling pathways for cell proliferation. Conclusions:We conclude that Nef induces the early molecular changes in podocytes that are essential for the dedifferentiation and proliferation of podocytes in HIVAN pathogenesis. These data provide the first clear molecular evidence that Nef alters the podocyte phenotype in vivo.


Journal of Biological Chemistry | 2009

Inhibition of p66ShcA longevity gene rescues podocytes from HIV-1-induced oxidative stress and apoptosis

Mohammad Husain; Leonard G. Meggs; Himanshu Vashistha; Sonia Simoes; Kevin O. Griffiths; Dileep Kumar; Joanna Mikulak; Peter W. Mathieson; Moin A. Saleem; Luis Del Valle; Sergio Piña-Oviedo; Jin Ying Wang; Surya V. Seshan; Ashwani Malhotra; Krzysztof Reiss; Pravin C. Singhal

Glomerular visceral epithelial cells (podocytes) play a critical role in the pathogenesis of human immunodeficiency virus (HIV)-associated nephropathy. A key question concerns the mechanism(s) by which the HIV-1 genome alters the phenotype of the highly specialized, terminally differentiated podocytes. Here, using an in vitro system of conditionally immortalized differentiated human podocytes (CIDHPs), we document a pivotal role for the p66ShcA protein in HIV-1-induced reactive oxygen species generation and CIDHP apoptosis. CIDHP transfected with truncated HIV-1 construct (NL4-3) exhibit increased reactive oxygen species metabolism, DNA strand breaks, and a 5-fold increase in apoptosis, whereas the opposite was true for NL4-3/CIDHP co-transfected with mu-36p66ShcA (mu-36) dominant negative expression vector or isoform-specific p66-small interfering RNA. Phosphorylation at Ser-36 of the wild type p66ShcA protein, required for p66ShcA redox function and inhibition of the potent stress response regulator Foxo3a, was unchanged in mu-36/NL4-3/CIDHP but increased in NL4-3/CIDHP. Acute knockdown of Foxo3a by small interfering RNA induced a 50% increase in mu-36/NL4-3/CIDHP apoptosis, indicating that Foxo3a-dependent responses promote the survival phenotype in mu-36 cells. We conclude that inhibition of p66ShcA redox activity prevents generation of HIV-1 stress signals and activation of the CIDHP apoptosis program.


American Journal of Physiology-renal Physiology | 2013

HIV compromises integrity of the podocyte actin cytoskeleton through downregulation of the vitamin D receptor

Nirupama Chandel; Bipin Sharma; Mohammad Husain; Divya Salhan; Tejinder Singh; Partab Rai; Peter W. Mathieson; Moin A. Saleem; Ashwani Malhotra; Pravin C. Singhal

Alterations in the podocyte actin cytoskeleton have been implicated in the development of proteinuric kidney diseases. In the present study, we evaluated the effect of HIV on the podocyte actin cytoskeleton and the mechanism involved. We hypothesized that HIV may be compromising the actin cytoskeleton via downregulation of the vitamin D receptor (VDR) of conditionally immortalized differentiated human podocytes (CIDHPs). HIV-transduced podocytes (HIV/CIDHPs) not only displayed downregulation of VDR but also showed activation of the renin-angiotensin system (RAS) in the form of enhanced expression of renin and increased production of ANG II. Moreover, CIDHPs lacking VDR displayed enhanced ANG II production, and treatment of HIV/CIDHPs with EB1089 (vitamin D3; VD) attenuated ANG II production. HIV/CIDHPs as well as ANG II-treated CIDHPs exhibited enhanced expression of cathepsin (CTS) L. Additionally, losartan (an ANG II type I receptor blocker) inhibited both HIV- and ANG II-induced podocyte cathepsin L expression. Furthermore, VD downregulated HIV-induced podocyte CTSL expression. Both losartan and free radical scavengers attenuated HIV- and ANG II-induced podocyte reactive oxygen species (ROS) generation. HIV also led to cytosolic CTSL accumulation through enhancement of podocyte lysosomal membrane permeabilization; on the other hand, VD, losartan, and superoxide dismutase (SOD) attenuated HIV-induced enhanced podocyte cytosolic CTSL accumulation. Morphological evaluation of HIV/CIDHPs revealed sparse actin filaments and attenuated expression of dynamin. Interestingly, podocytes lacking CTSL displayed enhanced dynamin expression, and HIV/CIDHPs expressing CTSL exhibited downregulation of dynamin. These findings indicate that HIV-induced downregulation of podocyte VDR and associated RAS activation and cytosolic CTSL accumulation compromised the actin cytoskeleton.


PLOS ONE | 2012

Socio Economic Position in TB Prevalence and Access to Services: Results from a Population Prevalence Survey and a Facility-Based Survey in Bangladesh

Shahed Hossain; Ma Quaiyum; Khalequ Zaman; Sayera Banu; Mohammad Husain; Mohammad Akramul Islam; Erwin Cooreman; Martien W. Borgdorff; Knut Lönnroth; Abdul Hamid Salim; Frank van Leth

Background In Bangladesh DOTS has been provided free of charge since 1993, yet information on access to TB services by different population group is not well documented. The objective of this study was to assess and compare the socio economic position (SEP) of actively detected cases from the community and the cases being routinely detected under National Tuberculosis Control Programme (NTP) in Bangladesh. Methods and Findings SEP was assessed by validated asset item for each of the 21,427 households included in the national tuberculosis prevalence survey 2007–2009. A principal component analysis generated household scores and categorized in quartiles. The distribution of 33 actively identified cases was compared with the 240 NTP cases over the identical SEP quartiles to evaluate access to TB services by different groups of the population. The population prevalence of tuberculosis was 5 times higher in the lowest quartiles of population (95.4, 95% CI: 48.0–189.7) to highest quartile population (19.5, 95% CI: 6.9–55.0). Among the 33 cases detected during survey, 25 (75.8%) were from lower two quartiles, and the rest 8 (24.3%) were from upper two quartiles. Among TB cases detected passively under NTP, more than half of them 137 (57.1%) were from uppermost two quartiles, 98 (41%) from the second quartile, and 5 (2%) in the lowest quartile of the population. This distribution is not affected when adjusted for other factors or interactions among them. Conclusions The findings indicate that despite availability free of charge, DOTS is not equally accessed by the poorer sections of the population. However, these figures should be interpreted with caution since there is a need for additional studies that assess in-depth poverty indicators and its determinants in relation to access of the TB services provided in Bangladesh.


American Journal of Physiology-renal Physiology | 2012

HIV-induced kidney cell injury: role of ROS-induced downregulated vitamin D receptor

Divya Salhan; Mohammad Husain; Ashaan Subrati; Rohan Goyal; Tejinder Singh; Partab Rai; Ashwani Malhotra; Pravin C. Singhal

Reactive oxygen species (ROS) have been demonstrated to contribute to HIV-induced tubular cell injury. We hypothesized that HIV-induced ROS generation may be causing tubular cell injury through downregulation of vitamin D receptor (VDR) and associated downstream effects. In the present study, HIV not only downregulated tubular cell VDR expression but also inflicted DNA injury. On the other hand, EB-1089, a VDR agonist (VD), inhibited both downregulation of VDR and tubular cell DNA injury in the HIV milieu. H(2)O(2) (an O(-) donor) directly downregulated tubular cell VDR, whereas catalase, a free radical scavenger, inhibited HIV-induced downregulation of tubular cell VDR expression. HIV also stimulated the tubular cell renin-angiotensin system (RAS) through downregulation of VDR. Because losartan (an ANG II blolcker) partially inhibited HIV-induced tubular cell ROS generation while ANG II directly stimulated tubular cell ROS generation, it appears that HIV-induced ROS production was partly contributed by the RAS activation. VD not only inhibited HIV-induced RAS activation but also attenuated tubular cell ROS generation. Tubular cells displayed double jeopardy in the HIV milieu induction of double-strand breaks and attenuated DNA repair; additionally, in the HIV milieu, tubular cells exhibited enhanced expression of phospho-p53 and associated downstream signaling. A VDR agonist and an ANG II blocker not only preserved expression of tubular cell DNA repair proteins but also inhibited induction of double-strand breaks. In in vivo studies, renal cortical sections of Tg26 mice displayed attenuated expression of VDR both in podocytes and tubular cells. In addition, renal cortical sections of Tg26 mice displayed enhanced oxidative stress-induced kidney cell DNA damage. These findings indicated that HIV-induced tubular cell downregulation of VDR contributed to the RAS activation and associated tubular cell DNA damage. However, both VD and RAS blockade provided protection against these effects of HIV.


PLOS ONE | 2013

Morphine Induces Albuminuria by Compromising Podocyte Integrity

Xiqian Lan; Partab Rai; Nirupama Chandel; Kang Cheng; Rivka Lederman; Moin A. Saleem; Peter W. Mathieson; Mohammad Husain; John T. Crosson; Kalpna Gupta; Ashwani Malhotra; Pravin C. Singhal

Morphine has been reported to accelerate the progression of chronic kidney disease. However, whether morphine affects slit diaphragm (SD), the major constituent of glomerular filtration barrier, is still unclear. In the present study, we examined the effect of morphine on glomerular filtration barrier in general and podocyte integrity in particular. Mice were administered either normal saline or morphine for 72 h, then urine samples were collected and kidneys were subsequently isolated for immunohistochemical studies and Western blot. For in vitro studies, human podocytes were treated with morphine and then probed for the molecular markers of slit diaphragm. Morphine-receiving mice displayed a significant increase in albuminuria and showed effacement of podocyte foot processes. In both in vivo and in vitro studies, the expression of synaptopodin, a molecular marker for podocyte integrity, and the slit diaphragm constituting molecules (SDCM), such as nephrin, podocin, and CD2-associated protein (CD2AP), were decreased in morphine-treated podocytes. In vitro studies indicated that morphine modulated podocyte expression of SDCM through opiate mu (MOR) and kappa (KOR) receptors. Since morphine also enhanced podocyte oxidative stress, the latter seems to contribute to decreased SDCM expression. In addition, AKT, p38, and JNK pathways were involved in morphine-induced down regulation of SDCM in human podocytes. These findings demonstrate that morphine has the potential to alter the glomerular filtration barrier by compromising the integrity of podocytes.


Journal of Leukocyte Biology | 2013

VDR hypermethylation and HIV-induced T cell loss

Nirupama Chandel; Mohammad Husain; Hersh Goel; Divya Salhan; Xiqian Lan; Ashwani Malhotra; Joseph McGowan; Pravin C. Singhal

Epigenetics contributes to the development of variety of diseases by modulation of gene expression. We evaluated the effect of HIV‐induced VDR methylation on loss of TCs. HIV/TC displayed enhanced VDR‐CpG methylation and increased expression of Dnmt3b but attenuated expression of VDR. A demethylating agent, AZA, inhibited this effect of HIV. HIV/TC also displayed the activation of the RAS, which was reversed by EB (a VDA). Further, HIV/TCs displayed enhanced generation of ROS and induction of DSBs but attenuated DNA repair response. However, in the presence of AZA, EB, LOS (a RAS blocker), Cat, and tempol (free radical scavengers), HIV‐induced TC ROS generation and induction of DSBs were attenuated but associated with enhanced DNA repair. Additionally, AZA, EB, and LOS provided protection against HIV‐induced TC apoptosis. These findings suggested that HIV‐induced TC apoptosis was mediated through ROS generation in response to HIV‐induced VDR methylation and associated activation of the RAS.


American Journal of Physiology-renal Physiology | 2013

mTOR plays a critical role in p53-induced oxidative kidney cell injury in HIVAN

Partab Rai; Andrei Plagov; Xiqian Lan; Nirupama Chandel; Tejinder Singh; Rivka Lederman; Kamesh Ayasolla; Peter W. Mathieson; Moin A. Saleem; Mohammad Husain; Ashwani Malhotra; Praveen N. Chander; Pravin C. Singhal

Oxidative stress has been implicated to contribute to HIV-induced kidney cell injury; however, the role of p53, a modulator of oxidative stress, has not been evaluated in the development of HIV-associated nephropathy (HIVAN). We hypothesized that mammalian target of rapamycin (mTOR) may be critical for the induction of p53-mediated oxidative kidney cell injury in HIVAN. To test our hypothesis, we evaluated the effect of an mTOR inhibitor, rapamycin, on kidney cell p53 expression, downstream signaling, and kidney cell injury in both in vivo and in vitro studies. Inhibition of the mTOR pathway resulted in downregulation of renal tissue p53 expression, associated downstream signaling, and decreased number of sclerosed glomeruli, tubular microcysts, and apoptosed and 8-hydroxy deoxyguanosine (8-OHdG)-positive (+ve) cells in Tg26 mice. mTOR inhibition not only attenuated kidney cell expression of p66ShcA and phospho-p66ShcA but also reactivated the redox-sensitive stress response program in the form of enhanced expression of manganese superoxide dismutase (MnSOD) and catalase. In in vitro studies, the mTOR inhibitor also provided protection against HIV-induced podocyte apoptosis. Moreover, mTOR inhibition downregulated HIV-induced podocyte (HP/HIV) p53 expression. Since HP/HIV silenced for mTOR displayed a lack of expression of p53 as well as attenuated podocyte apoptosis, this suggests that mTOR is critical for kidney cell p53 activation and associated oxidative kidney cell injury in the HIV milieu.

Collaboration


Dive into the Mohammad Husain's collaboration.

Top Co-Authors

Avatar

Pravin C. Singhal

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ashwani Malhotra

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nirupama Chandel

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Partab Rai

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Xiqian Lan

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Divya Salhan

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dileep Kumar

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kang Cheng

The Feinstein Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge