Mohammad K. Eldomery
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammad K. Eldomery.
The Journal of Allergy and Clinical Immunology | 2017
Asbjørg Stray-Pedersen; Hanne Sørmo Sorte; Pubudu Saneth Samarakoon; Tomasz Gambin; Ivan K. Chinn; Zeynep Coban Akdemir; Hans Christian Erichsen; Lisa R. Forbes; Shen Gu; Bo Yuan; Shalini N. Jhangiani; Donna M. Muzny; Olaug K. Rødningen; Ying Sheng; Sarah K. Nicholas; Lenora M. Noroski; Filiz O. Seeborg; Carla M. Davis; Debra L. Canter; Emily M. Mace; Timothy J. Vece; Carl E. Allen; Harshal Abhyankar; Philip M. Boone; Christine R. Beck; Wojciech Wiszniewski; Børre Fevang; Pål Aukrust; Geir E. Tjønnfjord; Tobias Gedde-Dahl
Background: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. Objective: We sought to investigate the ability of whole‐exome screening methods to detect disease‐causing variants in patients with PIDDs. Methods: Patients with PIDDs from 278 families from 22 countries were investigated by using whole‐exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome‐tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. Results: A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD‐causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. Conclusion: This high‐throughput genomic approach enabled detection of disease‐related variants in unexpected genes; permitted detection of low‐grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.
Genome Medicine | 2017
Mohammad K. Eldomery; Zeynep Coban-Akdemir; Tamar Harel; Jill A. Rosenfeld; Tomasz Gambin; Asbjørg Stray-Pedersen; Sébastien Küry; Sandra Mercier; Davor Lessel; Jonas Denecke; Wojciech Wiszniewski; Samantha Penney; Pengfei Liu; Weimin Bi; Seema R. Lalani; Christian P. Schaaf; Michael F. Wangler; Carlos A. Bacino; Richard Alan Lewis; Lorraine Potocki; Brett H. Graham; John W. Belmont; Fernando Scaglia; Jordan S. Orange; Shalini N. Jhangiani; Theodore Chiang; Harsha Doddapaneni; Jianhong Hu; Donna M. Muzny; Fan Xia
BackgroundGiven the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery.MethodsWe designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent–offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols.ResultsAnalysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3).ConclusionAn efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts.
American Journal of Human Genetics | 2016
Tamar Harel; Wan Hee Yoon; Caterina Garone; Shen Gu; Zeynep Coban-Akdemir; Mohammad K. Eldomery; Jennifer E. Posey; Shalini N. Jhangiani; Jill A. Rosenfeld; Megan T. Cho; Stephanie Fox; Marjorie Withers; Stephanie M. Brooks; Theodore Chiang; Lita Duraine; Serkan Erdin; Bo Yuan; Yunru Shao; Elie Moussallem; Costanza Lamperti; Maria Anna Donati; Joshua D. Smith; Heather M. McLaughlin; Christine M. Eng; Magdalena Walkiewicz; Fan Xia; Tommaso Pippucci; Pamela Magini; Marco Seri; Massimo Zeviani
ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane protein implicated in mitochondrial dynamics, nucleoid organization, protein translation, cell growth, and cholesterol metabolism. We identified a recurrent de novo ATAD3A c.1582C>T (p.Arg528Trp) variant by whole-exome sequencing (WES) in five unrelated individuals with a core phenotype of global developmental delay, hypotonia, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. We also describe two families with biallelic variants in ATAD3A, including a homozygous variant in two siblings, and biallelic ATAD3A deletions mediated by nonallelic homologous recombination (NAHR) between ATAD3A and gene family members ATAD3B and ATAD3C. Tissue-specific overexpression of borR534W, the Drosophila mutation homologous to the human c.1582C>T (p.Arg528Trp) variant, resulted in a dramatic decrease in mitochondrial content, aberrant mitochondrial morphology, and increased autophagy. Homozygous null bor larvae showed a significant decrease of mitochondria, while overexpression of borWT resulted in larger, elongated mitochondria. Finally, fibroblasts of an affected individual exhibited increased mitophagy. We conclude that the p.Arg528Trp variant functions through a dominant-negative mechanism that results in small mitochondria that trigger mitophagy, resulting in a reduction in mitochondrial content. ATAD3A variation represents an additional link between mitochondrial dynamics and recognizable neurological syndromes, as seen with MFN2, OPA1, DNM1L, and STAT2 mutations.
American Journal of Human Genetics | 2016
Seema R. Lalani; Pengfei Liu; Jill A. Rosenfeld; Levi B. Watkin; Theodore Chiang; Magalie S. Leduc; Wenmiao Zhu; Yan Ding; Shujuan Pan; Francesco Vetrini; Christina Y. Miyake; Marwan Shinawi; Tomasz Gambin; Mohammad K. Eldomery; Zeynep Coban Akdemir; Lisa T. Emrick; Yael Wilnai; Susan Schelley; Mary Kay Koenig; Nada B. Memon; Laura S. Farach; Bradley P. Coe; Mahshid S. Azamian; Patricia Hernandez; Gladys Zapata; Shalini N. Jhangiani; Donna M. Muzny; Timothy Lotze; Gary D. Clark; Angus A. Wilfong
The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.460G>A (p.Gly154Arg) mutation was found in four unrelated individuals of Hispanic/Latino origin, and a homozygous ∼34 kb deletion affecting exons 3-9 was observed in two families of European ancestry. One individual of mixed Hispanic/European descent was found to be compound heterozygous for c.460G>A (p.Gly154Arg) and the deletion of exons 3-9. Additionally, a homozygous exons 4-6 deletion was identified in a consanguineous Middle Eastern Arab family. No homozygotes have been reported for these changes in control databases. Fibroblasts derived from a subject with the recurrent c.460G>A (p.Gly154Arg) mutation showed evidence of increased endoplasmic reticulum stress and a reduction in Golgi volume density in comparison to control. Our results show that the c.460G>A (p.Gly154Arg) mutation and the exons 3-9 heterozygous deletion in TANGO2 are recurrent pathogenic alleles present in the Latino/Hispanic and European populations, respectively, causing considerable morbidity in the homozygotes in these populations.
Nucleic Acids Research | 2016
Tomasz Gambin; Zeynep Coban Akdemir; Bo Yuan; Shen Gu; Theodore Chiang; Claudia M.B. Carvalho; Chad A. Shaw; Shalini N. Jhangiani; Philip M. Boone; Mohammad K. Eldomery; Ender Karaca; Yavuz Bayram; Asbjørg Stray-Pedersen; Donna M. Muzny; Wu Lin Charng; Vahid Bahrambeigi; John W. Belmont; Eric Boerwinkle; Arthur L. Beaudet; Richard A. Gibbs; James R. Lupski
Abstract We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor–Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17–50% of pathogenic CNVs in different disease cohorts where 7.1–11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses.
American Journal of Human Genetics | 2016
Elisabeth M. Lodder; Pasquelena De Nittis; Charlotte D. Koopman; Wojciech Wiszniewski; Carolina Fischinger Moura de Souza; Najim Lahrouchi; Nicolas Guex; Valerio Napolioni; Federico Tessadori; Leander Beekman; Eline A. Nannenberg; Lamiae Boualla; Nico A. Blom; Wim de Graaff; Maarten Kamermans; Dario Cocciadiferro; Natascia Malerba; Barbara Mandriani; Zeynep Coban Akdemir; Richard J. Fish; Mohammad K. Eldomery; Ilham Ratbi; Arthur A.M. Wilde; Teun P. de Boer; William F. Simonds; Marguerite Neerman-Arbez; V. Reid Sutton; Fernando Kok; James R. Lupski; Alexandre Reymond
GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision.
American Journal of Human Genetics | 2016
Tamar Harel; Gozde Yesil; Yavuz Bayram; Zeynep Coban-Akdemir; Wu Lin Charng; Ender Karaca; Ali Al Asmari; Mohammad K. Eldomery; Jill V. Hunter; Shalini N. Jhangiani; Jill A. Rosenfeld; Davut Pehlivan; Ayman W. El-Hattab; Mohammed A.M. Saleh; Charles A. LeDuc; Donna M. Muzny; Eric Boerwinkle; Richard A. Gibbs; Wendy K. Chung; Yaping Yang; John W. Belmont; James R. Lupski
The paradigm of a single gene associated with one specific phenotype and mode of inheritance has been repeatedly challenged. Genotype-phenotype correlations can often be traced to different mutation types, localization of the variants in distinct protein domains, or the trigger of or escape from nonsense-mediated decay. Using whole-exome sequencing, we identified homozygous variants in EMC1 that segregated with a phenotype of developmental delay, hypotonia, scoliosis, and cerebellar atrophy in three families. In addition, a de novo heterozygous EMC1 variant was seen in an individual with a similar clinical and MRI imaging phenotype. EMC1 encodes a member of the endoplasmic reticulum (ER)-membrane protein complex (EMC), an evolutionarily conserved complex that has been proposed to have multiple roles in ER-associated degradation, ER-mitochondria tethering, and proper assembly of multi-pass transmembrane proteins. Perturbations of protein folding and organelle crosstalk have been implicated in neurodegenerative processes including cerebellar atrophy. We propose EMC1 as a gene in which either biallelic or monoallelic variants might lead to a syndrome including intellectual disability and preferential degeneration of the cerebellum.
PLOS Genetics | 2017
Xi Luo; Jill A. Rosenfeld; Shinya Yamamoto; Tamar Harel; Zhongyuan Zuo; Melissa Hall; Klaas J. Wierenga; Matthew Pastore; Dennis Bartholomew; Mauricio R. Delgado; Joshua Rotenberg; Richard Alan Lewis; Lisa T. Emrick; Carlos A. Bacino; Mohammad K. Eldomery; Zeynep Coban Akdemir; Fan Xia; Yaping Yang; Seema R. Lalani; Timothy Lotze; James R. Lupski; Brendan Lee; Hugo J. Bellen; Michael F. Wangler
Dominant mutations in CACNA1A, encoding the α-1A subunit of the neuronal P/Q type voltage-dependent Ca2+ channel, can cause diverse neurological phenotypes. Rare cases of markedly severe early onset developmental delay and congenital ataxia can be due to de novo CACNA1A missense alleles, with variants affecting the S4 transmembrane segments of the channel, some of which are reported to be loss-of-function. Exome sequencing in five individuals with severe early onset ataxia identified one novel variant (p.R1673P), in a girl with global developmental delay and progressive cerebellar atrophy, and a recurrent, de novo p.R1664Q variant, in four individuals with global developmental delay, hypotonia, and ophthalmologic abnormalities. Given the severity of these phenotypes we explored their functional impact in Drosophila. We previously generated null and partial loss-of-function alleles of cac, the homolog of CACNA1A in Drosophila. Here, we created transgenic wild type and mutant genomic rescue constructs with the two noted conserved point mutations. The p.R1673P mutant failed to rescue cac lethality, displayed a gain-of-function phenotype in electroretinograms (ERG) recorded from mutant clones, and evolved a neurodegenerative phenotype in aging flies, based on ERGs and transmission electron microscopy. In contrast, the p.R1664Q variant exhibited loss of function and failed to develop a neurodegenerative phenotype. Hence, the novel R1673P allele produces neurodegenerative phenotypes in flies and human, likely due to a toxic gain of function.
American Journal of Human Genetics | 2016
Elisabeth M. Lodder; Pasquelena De Nittis; Charlotte D. Koopman; Wojciech Wiszniewski; Carolina Fischinger Moura de Souza; Najim Lahrouchi; Nicolas Guex; Valerio Napolioni; Federico Tessadori; Leander Beekman; Eline A. Nannenberg; Lamiae Boualla; Nico A. Blom; Wim de Graaff; Maarten Kamermans; Dario Cocciadiferro; Natascia Malerba; Barbara Mandriani; Zeynep Coban Akdemir; Richard J. Fish; Mohammad K. Eldomery; Ilham Ratbi; Arthur A.M. Wilde; Teun P. de Boer; William F. Simonds; Marguerite Neerman-Arbez; V. Reid Sutton; Fernando Kok; James R. Lupski; Alexandre Reymond
GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision. LODDER, Elisabeth M, DE NITTIS, Pasquelena, KOOPMAN, Charlotte D & Collaboration, FISH, Richard (Collab.), et al. GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome with Sinus Bradycardia and Cognitive Disability. American Journal of Human Genetics, 2016, vol. 99, no. 3, p. 704-710
American Journal of Human Genetics | 2018
Hanyin Cheng; Avinash V. Dharmadhikari; Sylvia Varland; Ning Ma; Deepti Domingo; Robert Kleyner; Alan F. Rope; Margaret Yoon; Asbjørg Stray-Pedersen; Jennifer E. Posey; Sarah R. Crews; Mohammad K. Eldomery; Zeynep Coban Akdemir; Andrea M. Lewis; Vernon R. Sutton; Jill A. Rosenfeld; Erin Conboy; Katherine Agre; Fan Xia; Magdalena Walkiewicz; Mauro Longoni; Frances A. High; Marjon van Slegtenhorst; Grazia M.S. Mancini; Candice R. Finnila; Arie van Haeringen; Nicolette S. den Hollander; Claudia Ruivenkamp; Sakkubai Naidu; Sonal Mahida
N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.