Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamar Harel is active.

Publication


Featured researches published by Tamar Harel.


Cell | 2014

A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases.

Shinya Yamamoto; Manish Jaiswal; Wu Lin Charng; Tomasz Gambin; Ender Karaca; Ghayda M. Mirzaa; Wojciech Wiszniewski; Hector Sandoval; Nele A. Haelterman; Bo Xiong; Ke Zhang; Vafa Bayat; Gabriela David; Tongchao Li; Kuchuan Chen; Upasana Gala; Tamar Harel; Davut Pehlivan; Samantha Penney; Lisenka E.L.M. Vissers; Joep de Ligt; Shalini N. Jhangiani; Yajing Xie; Stephen H. Tsang; Yesim Parman; Merve Sivaci; Esra Battaloglu; Donna M. Muzny; Ying Wooi Wan; Zhandong Liu

Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.


The New England Journal of Medicine | 2017

Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation

Jennifer E. Posey; Tamar Harel; Pengfei Liu; Jill A. Rosenfeld; Regis A. James; Zeynep Coban Akdemir; Magdalena Walkiewicz; Weimin Bi; Rui Xiao; Yan Ding; Fan Xia; Arthur L. Beaudet; Donna M. Muzny; Richard A. Gibbs; Eric Boerwinkle; Christine M. Eng; V. Reid Sutton; Chad A. Shaw; Sharon E. Plon; Yaping Yang; James R. Lupski

BACKGROUND Whole‐exome sequencing can provide insight into the relationship between observed clinical phenotypes and underlying genotypes. METHODS We conducted a retrospective analysis of data from a series of 7374 consecutive unrelated patients who had been referred to a clinical diagnostic laboratory for whole‐exome sequencing; our goal was to determine the frequency and clinical characteristics of patients for whom more than one molecular diagnosis was reported. The phenotypic similarity between molecularly diagnosed pairs of diseases was calculated with the use of terms from the Human Phenotype Ontology. RESULTS A molecular diagnosis was rendered for 2076 of 7374 patients (28.2%); among these patients, 101 (4.9%) had diagnoses that involved two or more disease loci. We also analyzed parental samples, when available, and found that de novo variants accounted for 67.8% (61 of 90) of pathogenic variants in autosomal dominant disease genes and 51.7% (15 of 29) of pathogenic variants in X‐linked disease genes; both variants were de novo in 44.7% (17 of 38) of patients with two monoallelic variants. Causal copy‐number variants were found in 12 patients (11.9%) with multiple diagnoses. Phenotypic similarity scores were significantly lower among patients in whom the phenotype resulted from two distinct mendelian disorders that affected different organ systems (50 patients) than among patients with disorders that had overlapping phenotypic features (30 patients) (median score, 0.21 vs. 0.36; P=1.77×10‐7). CONCLUSIONS In our study, we found multiple molecular diagnoses in 4.9% of cases in which whole‐exome sequencing was informative. Our results show that structured clinical ontologies can be used to determine the degree of overlap between two mendelian diseases in the same patient; the diseases can be distinct or overlapping. Distinct disease phenotypes affect different organ systems, whereas overlapping disease phenotypes are more likely to be caused by two genes encoding proteins that interact within the same pathway. (Funded by the National Institutes of Health and the Ting Tsung and Wei Fong Chao Foundation.)


Cell Reports | 2015

Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy

Claudia Gonzaga-Jauregui; Tamar Harel; Tomasz Gambin; Maria Kousi; Laurie B. Griffin; Ludmila Francescatto; Burcak Ozes; Ender Karaca; Shalini N. Jhangiani; Matthew N. Bainbridge; Kim Lawson; Davut Pehlivan; Yuji Okamoto; Marjorie Withers; Pedro Mancias; Anne Slavotinek; Pamela J. Reitnauer; Meryem Tuba Goksungur; Michael E. Shy; Thomas O. Crawford; Michel Koenig; Jason R. Willer; Brittany N. Flores; Igor Pediaditrakis; Onder Us; Wojciech Wiszniewski; Yesim Parman; Anthony Antonellis; Donna M. Muzny; Nicholas Katsanis

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ∼ 45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.


Genome Medicine | 2017

Lessons learned from additional research analyses of unsolved clinical exome cases

Mohammad K. Eldomery; Zeynep Coban-Akdemir; Tamar Harel; Jill A. Rosenfeld; Tomasz Gambin; Asbjørg Stray-Pedersen; Sébastien Küry; Sandra Mercier; Davor Lessel; Jonas Denecke; Wojciech Wiszniewski; Samantha Penney; Pengfei Liu; Weimin Bi; Seema R. Lalani; Christian P. Schaaf; Michael F. Wangler; Carlos A. Bacino; Richard Alan Lewis; Lorraine Potocki; Brett H. Graham; John W. Belmont; Fernando Scaglia; Jordan S. Orange; Shalini N. Jhangiani; Theodore Chiang; Harsha Doddapaneni; Jianhong Hu; Donna M. Muzny; Fan Xia

BackgroundGiven the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery.MethodsWe designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent–offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols.ResultsAnalysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3).ConclusionAn efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts.


American Journal of Human Genetics | 2016

Recurrent De Novo and Biallelic Variation of ATAD3A, Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes

Tamar Harel; Wan Hee Yoon; Caterina Garone; Shen Gu; Zeynep Coban-Akdemir; Mohammad K. Eldomery; Jennifer E. Posey; Shalini N. Jhangiani; Jill A. Rosenfeld; Megan T. Cho; Stephanie Fox; Marjorie Withers; Stephanie M. Brooks; Theodore Chiang; Lita Duraine; Serkan Erdin; Bo Yuan; Yunru Shao; Elie Moussallem; Costanza Lamperti; Maria Anna Donati; Joshua D. Smith; Heather M. McLaughlin; Christine M. Eng; Magdalena Walkiewicz; Fan Xia; Tommaso Pippucci; Pamela Magini; Marco Seri; Massimo Zeviani

ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane protein implicated in mitochondrial dynamics, nucleoid organization, protein translation, cell growth, and cholesterol metabolism. We identified a recurrent de novo ATAD3A c.1582C>T (p.Arg528Trp) variant by whole-exome sequencing (WES) in five unrelated individuals with a core phenotype of global developmental delay, hypotonia, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. We also describe two families with biallelic variants in ATAD3A, including a homozygous variant in two siblings, and biallelic ATAD3A deletions mediated by nonallelic homologous recombination (NAHR) between ATAD3A and gene family members ATAD3B and ATAD3C. Tissue-specific overexpression of borR534W, the Drosophila mutation homologous to the human c.1582C>T (p.Arg528Trp) variant, resulted in a dramatic decrease in mitochondrial content, aberrant mitochondrial morphology, and increased autophagy. Homozygous null bor larvae showed a significant decrease of mitochondria, while overexpression of borWT resulted in larger, elongated mitochondria. Finally, fibroblasts of an affected individual exhibited increased mitophagy. We conclude that the p.Arg528Trp variant functions through a dominant-negative mechanism that results in small mitochondria that trigger mitophagy, resulting in a reduction in mitochondrial content. ATAD3A variation represents an additional link between mitochondrial dynamics and recognizable neurological syndromes, as seen with MFN2, OPA1, DNM1L, and STAT2 mutations.


Journal of Clinical Investigation | 2016

Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin

Yavuz Bayram; Ender Karaca; Zeynep Coban Akdemir; Elif Yilmaz; Gulsen Akay Tayfun; Hatip Aydin; Deniz Torun; Sevcan Tug Bozdogan; Alper Gezdirici; Sedat Işıkay; Mehmed M. Atik; Tomasz Gambin; Tamar Harel; Ayman W. El-Hattab; Wu Lin Charng; Davut Pehlivan; Shalini N. Jhangiani; Donna M. Muzny; Ali Karaman; Tamer Celik; Ozge Ozalp Yuregir; Timur Yildirim; Ilhan A. Bayhan; Eric Boerwinkle; Richard A. Gibbs; Nursel Elcioglu; Beyhan Tüysüz; James R. Lupski

BACKGROUND Arthrogryposis, defined as congenital joint contractures in 2 or more body areas, is a clinical sign rather than a specific disease diagnosis. To date, more than 400 different disorders have been described that present with arthrogryposis, and variants of more than 220 genes have been associated with these disorders; however, the underlying molecular etiology remains unknown in the considerable majority of these cases. METHODS We performed whole exome sequencing (WES) of 52 patients with clinical presentation of arthrogryposis from 48 different families. RESULTS Affected individuals from 17 families (35.4%) had variants in known arthrogryposis-associated genes, including homozygous variants of cholinergic γ nicotinic receptor (CHRNG, 6 subjects) and endothelin converting enzyme-like 1 (ECEL1, 4 subjects). Deleterious variants in candidate arthrogryposis-causing genes (fibrillin 3 [FBN3], myosin IXA [MYO9A], and pleckstrin and Sec7 domain containing 3 [PSD3]) were identified in 3 families (6.2%). Moreover, in 8 families with a homozygous mutation in an arthrogryposis-associated gene, we identified a second locus with either a homozygous or compound heterozygous variant in a candidate gene (myosin binding protein C, fast type [MYBPC2] and vacuolar protein sorting 8 [VPS8], 2 families, 4.2%) or in another disease-associated genes (6 families, 12.5%), indicating a potential mutational burden contributing to disease expression. CONCLUSION In 58.3% of families, the arthrogryposis manifestation could be explained by a molecular diagnosis; however, the molecular etiology in subjects from 20 families remained unsolved by WES. Only 5 of these 20 unrelated subjects had a clinical presentation consistent with amyoplasia; a phenotype not thought to be of genetic origin. Our results indicate that increased use of genome-wide technologies will provide opportunities to better understand genetic models for diseases and molecular mechanisms of genetically heterogeneous disorders, such as arthrogryposis. FUNDING This work was supported in part by US National Human Genome Research Institute (NHGRI)/National Heart, Lung, and Blood Institute (NHLBI) grant U54HG006542 to the Baylor-Hopkins Center for Mendelian Genomics, and US National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS058529 to J.R. Lupski.


Genome Medicine | 2016

POGZ truncating alleles cause syndromic intellectual disability

Janson J. White; Christine R. Beck; Tamar Harel; Jennifer E. Posey; Shalini N. Jhangiani; Sha Tang; Kelly D. Farwell; Zöe Powis; Nancy J. Mendelsohn; Janice Baker; Lynda Pollack; Kati J. Mason; Klaas J. Wierenga; Daniel K. Arrington; Melissa Hall; Apostolos Psychogios; Laura Fairbrother; Magdalena Walkiewicz; Richard E. Person; Zhiyv Niu; Jing Zhang; Jill A. Rosenfeld; Donna M. Muzny; Christine M. Eng; Arthur L. Beaudet; James R. Lupski; Eric Boerwinkle; Richard A. Gibbs; Yaping Yang; Fan Xia

BackgroundLarge-scale cohort-based whole exome sequencing of individuals with neurodevelopmental disorders (NDDs) has identified numerous novel candidate disease genes; however, detailed phenotypic information is often lacking in such studies. De novo mutations in pogo transposable element with zinc finger domain (POGZ) have been identified in six independent and diverse cohorts of individuals with NDDs ranging from autism spectrum disorder to developmental delay.MethodsWhole exome sequencing was performed on five unrelated individuals. Sanger sequencing was used to validate variants and segregate mutations with the phenotype in available family members.ResultsWe identified heterozygous truncating mutations in POGZ in five unrelated individuals, which were confirmed to be de novo or not present in available parental samples. Careful review of the phenotypes revealed shared features that included developmental delay, intellectual disability, hypotonia, behavioral abnormalities, and similar facial characteristics. Variable features included short stature, microcephaly, strabismus and hearing loss.ConclusionsWhile POGZ has been associated with neurodevelopmental disorders in large cohort studies, our data suggest that loss of function variants in POGZ lead to an identifiable syndrome of NDD with specific phenotypic traits. This study exemplifies the era of human reverse clinical genomics ushered in by large disease-directed cohort studies; first defining a new syndrome molecularly and, only subsequently, phenotypically.


American Journal of Human Genetics | 2016

Monoallelic and Biallelic Variants in EMC1 Identified in Individuals with Global Developmental Delay, Hypotonia, Scoliosis, and Cerebellar Atrophy.

Tamar Harel; Gozde Yesil; Yavuz Bayram; Zeynep Coban-Akdemir; Wu Lin Charng; Ender Karaca; Ali Al Asmari; Mohammad K. Eldomery; Jill V. Hunter; Shalini N. Jhangiani; Jill A. Rosenfeld; Davut Pehlivan; Ayman W. El-Hattab; Mohammed A.M. Saleh; Charles A. LeDuc; Donna M. Muzny; Eric Boerwinkle; Richard A. Gibbs; Wendy K. Chung; Yaping Yang; John W. Belmont; James R. Lupski

The paradigm of a single gene associated with one specific phenotype and mode of inheritance has been repeatedly challenged. Genotype-phenotype correlations can often be traced to different mutation types, localization of the variants in distinct protein domains, or the trigger of or escape from nonsense-mediated decay. Using whole-exome sequencing, we identified homozygous variants in EMC1 that segregated with a phenotype of developmental delay, hypotonia, scoliosis, and cerebellar atrophy in three families. In addition, a de novo heterozygous EMC1 variant was seen in an individual with a similar clinical and MRI imaging phenotype. EMC1 encodes a member of the endoplasmic reticulum (ER)-membrane protein complex (EMC), an evolutionarily conserved complex that has been proposed to have multiple roles in ER-associated degradation, ER-mitochondria tethering, and proper assembly of multi-pass transmembrane proteins. Perturbations of protein folding and organelle crosstalk have been implicated in neurodegenerative processes including cerebellar atrophy. We propose EMC1 as a gene in which either biallelic or monoallelic variants might lead to a syndrome including intellectual disability and preferential degeneration of the cerebellum.


American Journal of Human Genetics | 2015

Nonrecurrent 17p11.2p12 Rearrangement Events that Result in Two Concomitant Genomic Disorders: The PMP22-RAI1 Contiguous Gene Duplication Syndrome

Bo Yuan; Tamar Harel; Shen Gu; Pengfei Liu; Lydie Burglen; Sandra Chantot-Bastaraud; Violet Gelowani; Christine R. Beck; Claudia M.B. Carvalho; Sau Wai Cheung; Andrew Coe; Valérie Malan; Arnold Munnich; Pilar L. Magoulas; Lorraine Potocki; James R. Lupski

The genomic duplication associated with Potocki-Lupski syndrome (PTLS) maps in close proximity to the duplication associated with Charcot-Marie-Tooth disease type 1A (CMT1A). PTLS is characterized by hypotonia, failure to thrive, reduced body weight, intellectual disability, and autistic features. CMT1A is a common autosomal dominant distal symmetric peripheral polyneuropathy. The key dosage-sensitive genes RAI1 and PMP22 are respectively associated with PTLS and CMT1A. Recurrent duplications accounting for the majority of subjects with these conditions are mediated by nonallelic homologous recombination between distinct low-copy repeat (LCR) substrates. The LCRs flanking a contiguous genomic interval encompassing both RAI1 and PMP22 do not share extensive homology; thus, duplications encompassing both loci are rare and potentially generated by a different mutational mechanism. We characterized genomic rearrangements that simultaneously duplicate PMP22 and RAI1, including nine potential complex genomic rearrangements, in 23 subjects by high-resolution array comparative genomic hybridization and breakpoint junction sequencing. Insertions and microhomologies were found at the breakpoint junctions, suggesting potential replicative mechanisms for rearrangement formation. At the breakpoint junctions of these nonrecurrent rearrangements, enrichment of repetitive DNA sequences was observed, indicating that they might predispose to genomic instability and rearrangement. Clinical evaluation revealed blended PTLS and CMT1A phenotypes with a potential earlier onset of neuropathy. Moreover, additional clinical findings might be observed due to the extra duplicated material included in the rearrangements. Our genomic analysis suggests replicative mechanisms as a predominant mechanism underlying PMP22-RAI1 contiguous gene duplications and provides further evidence supporting the role of complex genomic architecture in genomic instability.


PLOS Genetics | 2017

Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially

Xi Luo; Jill A. Rosenfeld; Shinya Yamamoto; Tamar Harel; Zhongyuan Zuo; Melissa Hall; Klaas J. Wierenga; Matthew Pastore; Dennis Bartholomew; Mauricio R. Delgado; Joshua Rotenberg; Richard Alan Lewis; Lisa T. Emrick; Carlos A. Bacino; Mohammad K. Eldomery; Zeynep Coban Akdemir; Fan Xia; Yaping Yang; Seema R. Lalani; Timothy Lotze; James R. Lupski; Brendan Lee; Hugo J. Bellen; Michael F. Wangler

Dominant mutations in CACNA1A, encoding the α-1A subunit of the neuronal P/Q type voltage-dependent Ca2+ channel, can cause diverse neurological phenotypes. Rare cases of markedly severe early onset developmental delay and congenital ataxia can be due to de novo CACNA1A missense alleles, with variants affecting the S4 transmembrane segments of the channel, some of which are reported to be loss-of-function. Exome sequencing in five individuals with severe early onset ataxia identified one novel variant (p.R1673P), in a girl with global developmental delay and progressive cerebellar atrophy, and a recurrent, de novo p.R1664Q variant, in four individuals with global developmental delay, hypotonia, and ophthalmologic abnormalities. Given the severity of these phenotypes we explored their functional impact in Drosophila. We previously generated null and partial loss-of-function alleles of cac, the homolog of CACNA1A in Drosophila. Here, we created transgenic wild type and mutant genomic rescue constructs with the two noted conserved point mutations. The p.R1673P mutant failed to rescue cac lethality, displayed a gain-of-function phenotype in electroretinograms (ERG) recorded from mutant clones, and evolved a neurodegenerative phenotype in aging flies, based on ERGs and transmission electron microscopy. In contrast, the p.R1664Q variant exhibited loss of function and failed to develop a neurodegenerative phenotype. Hence, the novel R1673P allele produces neurodegenerative phenotypes in flies and human, likely due to a toxic gain of function.

Collaboration


Dive into the Tamar Harel's collaboration.

Top Co-Authors

Avatar

James R. Lupski

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Richard A. Gibbs

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Davut Pehlivan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ender Karaca

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jill A. Rosenfeld

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jennifer E. Posey

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yaping Yang

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge