Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Othman is active.

Publication


Featured researches published by Mohammad Othman.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration

Atsuhiro Kanda; Wei Chen; Mohammad Othman; Kari Branham; Matthew Brooks; Ritu Khanna; Shirley He; Robert H. Lyons; Gonçalo R. Abecasis; Anand Swaroop

Genetic variants at chromosomes 1q31-32 and 10q26 are strongly associated with susceptibility to age-related macular degeneration (AMD), a common blinding disease of the elderly. We demonstrate, by evaluating 45 tag SNPs spanning HTRA1, PLEKHA1, and predicted gene LOC387715/ARMS2, that rs10490924 SNP alone, or a variant in strong linkage disequilibrium, can explain the bulk of association between the 10q26 chromosomal region and AMD. A previously suggested causal SNP, rs11200638, and other examined SNPs in the region are only indirectly associated with the disease. Contrary to previous reports, we show that rs11200638 SNP has no significant impact on HTRA1 promoter activity in three different cell lines, and HTRA1 mRNA expression exhibits no significant change between control and AMD retinas. However, SNP rs10490924 shows the strongest association with AMD (P = 5.3 × 10−30), revealing an estimated relative risk of 2.66 for GT heterozygotes and 7.05 for TT homozygotes. The rs10490924 SNP results in nonsynonymous A69S alteration in the predicted protein LOC387715/ARMS2, which has a highly conserved ortholog in chimpanzee, but not in other vertebrate sequences. We demonstrate that LOC387715/ARMS2 mRNA is detected in the human retina and various cell lines and encodes a 12-kDa protein, which localizes to the mitochondrial outer membrane when expressed in mammalian cells. We propose that rs10490924 represents a major susceptibility variant for AMD at 10q26. A likely biological mechanism is that the A69S change in the LOC387715/ARMS2 protein affects its presumptive function in mitochondria.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration

Wei Chen; Dwight Stambolian; Albert O. Edwards; Kari Branham; Mohammad Othman; Johanna Jakobsdottir; Nirubol Tosakulwong; Margaret A. Pericak-Vance; Peter A. Campochiaro; Michael L. Klein; Perciliz L. Tan; Yvette P. Conley; Atsuhiro Kanda; Laura J. Kopplin; Yanming Li; Katherine J. Augustaitis; Athanasios J. Karoukis; William K. Scott; Anita Agarwal; Jaclyn L. Kovach; Stephen G. Schwartz; Eric A. Postel; Matthew Brooks; Keith H. Baratz; William L. Brown; Alexander J. Brucker; Anton Orlin; Gary C. Brown; Allen C. Ho; Carl D. Regillo

We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10−75), ARMS2 (P < 10−59), C2/CFB (P < 10−20), C3 (P < 10−9), and CFI (P < 10−6). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 × 10−11), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 × 10−7; CETP, P = 7.4 × 10−7) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c—associated alleles near LPL (P = 3.0 × 10−3) and ABCA1 (P = 5.6 × 10−4). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.


Nature Genetics | 2006

CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration

Mingyao Li; Pelin Atmaca-Sonmez; Mohammad Othman; Kari Branham; Ritu Khanna; Michael S Wade; Yun Li; Liming Liang; Sepideh Zareparsi; Anand Swaroop; Gonçalo R. Abecasis

In developed countries, age-related macular degeneration is a common cause of blindness in the elderly. A common polymorphism, encoding the sequence variation Y402H in complement factor H (CFH), has been strongly associated with disease susceptibility. Here, we examined 84 polymorphisms in and around CFH in 726 affected individuals (including 544 unrelated individuals) and 268 unrelated controls. In this sample, 20 of these polymorphisms showed stronger association with disease susceptibility than the Y402H variant. Further, no single polymorphism could account for the contribution of the CFH locus to disease susceptibility. Instead, multiple polymorphisms defined a set of four common haplotypes (of which two were associated with disease susceptibility and two seemed to be protective) and multiple rare haplotypes (associated with increased susceptibility in aggregate). Our results suggest that there are multiple disease susceptibility alleles in the region and that noncoding CFH variants play a role in disease susceptibility.


Nature Genetics | 2009

A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies.

Hemant Khanna; Erica E. Davis; Carlos A. Murga-Zamalloa; Alejandro Estrada-Cuzcano; Irma Lopez; Anneke I. den Hollander; Marijke N Zonneveld; Mohammad Othman; Naushin Waseem; Christina Chakarova; Cecilia Maubaret; Anna Diaz-Font; Ian M. MacDonald; Donna M. Muzny; David A. Wheeler; Margaret Morgan; Lora Lewis; Clare V. Logan; Perciliz L. Tan; Michael Beer; Chris F. Inglehearn; Richard Alan Lewis; Samuel G. Jacobson; Carsten Bergmann; Philip L. Beales; Tania Attié-Bitach; Colin A. Johnson; Edgar A. Otto; Shomi S. Bhattacharya; Friedhelm Hildebrandt

Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.


American Journal of Ophthalmology | 2000

Age-dependent Prevalence of Mutations at the GLC1A Locus in Primary Open-angle Glaucoma

Satoko Shimizu; Paul R. Lichter; A. Tim Johnson; Zhaohui Zhou; Misao Higashi; Maria Soffia Gottfredsdottir; Mohammad Othman; Frank W. Rozsa; Robert M Schertzer; Margo S. Clarke; Arthur L. Schwartz; Catherine A. Downs; Douglas Vollrath; Julia E. Richards

PURPOSE To screen a population with primary open-angle glaucoma for mutations in the gene that encodes the trabecular meshwork inducible glucocorticoid response protein (TIGR), also known as myocilin (MYOC). METHODS Ophthalmologic information was collected for study subjects with primary open-angle glaucoma and their relatives. Mutation screening of 74 primary open-angle glaucoma probands was conducted by sequencing TIGR/MYOC coding sequence and splice sites. RESULTS In 23 families we detected 13 nonsynonymous sequence changes, nine of which appear to be mutations likely to cause or contribute to primary open-angle glaucoma. Two mutations, Arg272Gly and Ile499Ser, and one nonsynonymous sequence variant, Asn57Asp, are novel. We found mutations in nine of 25 juvenile glaucoma probands (36%) and two of 49 adult-onset glaucoma probands (4%). Age classification of families rather than individual probands revealed mutations in three of nine families with strictly juvenile primary open-angle glaucoma (33%), and no mutations in 39 families with strictly adult-onset primary open-angle glaucoma (0%). In families with mixed-onset primary open-angle glaucoma containing both juvenile primary open-angle glaucoma and adult-onset primary open-angle glaucoma cases, we found mutations in eight of 26 families (31%). CONCLUSIONS Our data suggest that Gly252Arg, Arg272Gly, Glu323Lys, Gln368STOP, Pro370Leu, Thr377Met, Val426Phe, Ile477Asn, and Ile499Ser are likely to play roles that cause or contribute to the etiology of autosomal dominant primary open-angle glaucoma. Our finding of more TIGR/MYOC mutations in families with mixed-onset primary open-angle glaucoma than in the families with strictly adult-onset primary open-angle glaucoma implies that the presence of relatives with juvenile primary open-angle glaucoma in a family could be used as a basis for identifying a subset of the population with adult-onset primary open-angle glaucoma with higher prevalence of TIGR/MYOC mutations. To address this issue, and to refine estimations of mutation prevalence in these age-defined subpopulations, prospective study of a larger population ascertained entirely through adult-onset primary open-angle glaucoma probands will be needed.


American Journal of Human Genetics | 2002

Retinal dystrophy due to paternal isodisomy for chromosome 1 or chromosome 2, with homoallelism for mutations in RPE65 or MERTK, respectively.

Debra A. Thompson; Christina L. McHenry; Yun Li; Julia E. Richards; Mohammad Othman; Eberhard Schwinger; Douglas Vollrath; Samuel G. Jacobson; Andreas Gal

Uniparental disomy (UPD) is a rare condition in which a diploid offspring carries a chromosomal pair from a single parent. We now report the first two cases of UPD resulting in retinal degeneration. We identified an apparently homozygous loss-of-function mutation of RPE65 (1p31) in one retinal dystrophy patient and an apparently homozygous loss-of-function mutation of MERTK (2q14.1) in a second retinal dystrophy patient. In both families, the gene defect was present in the patients heterozygous father but not in the patients mother. Analysis of haplotypes in each nuclear kindred, by use of DNA polymorphisms distributed along both chromosomal arms, indicated the absence of the maternal allele for all informative markers tested on chromosome 1 in the first patient and on chromosome 2 in the second patient. Our results suggest that retinal degeneration in these individuals is due to apparently complete paternal isodisomy involving reduction to homoallelism for RPE65 or MERTK loss-of-function alleles. Our findings provide evidence for the first time, in the case of chromosome 2, and confirm previous observations, in the case of chromosome 1, that there are no paternally imprinted genes on chromosomes 1 and 2 that have a major effect on phenotype.


Nature Genetics | 2013

Identification of a rare coding variant in complement 3 associated with age-related macular degeneration

Xiaowei Zhan; David E. Larson; Chaolong Wang; Daniel C. Koboldt; Yuri V. Sergeev; Robert S. Fulton; Lucinda Fulton; Catrina C. Fronick; Kari Branham; Jennifer L. Bragg-Gresham; Goo Jun; Youna Hu; Hyun Min Kang; Dajiang J. Liu; Mohammad Othman; Matthew Brooks; Rinki Ratnapriya; Alexis Boleda; Felix Grassmann; Claudia N. von Strachwitz; Lana M. Olson; Gabriëlle H.S. Buitendijk; Albert Hofman; Cornelia M. van Duijn; Valentina Cipriani; Anthony T. Moore; Humma Shahid; Yingda Jiang; Yvette P. Conley; Denise J. Morgan

Macular degeneration is a common cause of blindness in the elderly. To identify rare coding variants associated with a large increase in risk of age-related macular degeneration (AMD), we sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we augmented our control set with ancestry-matched exome-sequenced controls. An analysis of coding variation in 2,268 AMD cases and 2,268 ancestry-matched controls identified 2 large-effect rare variants: previously described p.Arg1210Cys encoded in the CFH gene (case frequency (fcase) = 0.51%; control frequency (fcontrol) = 0.02%; odds ratio (OR) = 23.11) and newly identified p.Lys155Gln encoded in the C3 gene (fcase = 1.06%; fcontrol = 0.39%; OR = 2.68). The variants suggest decreased inhibition of C3 by complement factor H, resulting in increased activation of the alternative complement pathway, as a key component of disease biology.


American Journal of Human Genetics | 1998

Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11.

Mohammad Othman; S.A. Sullivan; G.L. Skuta; D.A. Cockrell; Heather M. Stringham; Catherine A. Downs; A. Fornés; A. Mick; Michael Boehnke; Douglas Vollrath; Julia E. Richards

Nanophthalmos is an uncommon developmental ocular disorder characterized by a small eye, as indicated by short axial length, high hyperopia (severe farsightedness), high lens/eye volume ratio, and a high incidence of angle-closure glaucoma. We performed clinical and genetic evaluations of members of a large family in which nanophthalmos is transmitted in an autosomal dominant manner. Ocular examinations of 22 affected family members revealed high hyperopia (range +7.25-+13.00 diopters; mean +9.88 diopters) and short axial length (range 17.55-19.28 mm; mean 18.13 mm). Twelve affected family members had angle-closure glaucoma or occludable anterior-chamber angles. Linkage analysis of a genome scan demonstrated highly significant evidence that nanophthalmos in this family is the result of a defect in a previously unidentified locus (NNO1) on chromosome 11. The gene was localized to a 14.7-cM interval between D11S905 and D11S987, with a maximum LOD score of 5. 92 at a recombination fraction of .00 for marker D11S903 and a multipoint maximum LOD score of 6.31 for marker D11S1313. NNO1 is the first human locus associated with nanophthalmos or with an angle-closure glaucoma phenotype, and the identification of the NNO1 locus is the first step toward the cloning of the gene. A cloned copy of the gene will enable examination of the relationship, if any, between nanophthalmos and less severe forms of hyperopia and between nanophthalmos and other conditions in which angle-closure glaucoma is a feature.


American Journal of Human Genetics | 2006

Premature Truncation of a Novel Protein, RD3, Exhibiting Subnuclear Localization Is Associated with Retinal Degeneration

James S. Friedman; Bo Chang; Chitra Kannabiran; Christina Chakarova; Hardeep Pal Singh; Subhadra Jalali; Norman L. Hawes; Kari Branham; Mohammad Othman; E. Filippova; Debra A. Thompson; Andrew R. Webster; Sten Andréasson; Samuel G. Jacobson; Shomi S. Bhattacharya; John R. Heckenlively; Anand Swaroop

The rd3 mouse is one of the oldest identified models of early-onset retinal degeneration. Using the positional candidate approach, we have identified a C-->T substitution in a novel gene, Rd3, that encodes an evolutionarily conserved protein of 195 amino acids. The rd3 mutation results in a predicted stop codon after residue 106. This change is observed in four rd3 lines derived from the original collected mice but not in the nine wild-type mouse strains that were examined. Rd3 is preferentially expressed in the retina and exhibits increasing expression through early postnatal development. In transiently transfected COS-1 cells, the RD3-fusion protein shows subnuclear localization adjacent to promyelocytic leukemia-gene-product bodies. The truncated mutant RD3 protein is detectable in COS-1 cells but appears to get degraded rapidly. To explore potential association of the human RD3 gene at chromosome 1q32 with retinopathies, we performed a mutation screen of 881 probands from North America, India, and Europe. In addition to several alterations of uncertain significance, we identified a homozygous alteration in the invariant G nucleotide of the RD3 exon 2 donor splice site in two siblings with Leber congenital amaurosis. This mutation is predicted to result in premature truncation of the RD3 protein, segregates with the disease, and is not detected in 121 ethnically matched control individuals. We suggest that the retinopathy-associated RD3 protein is part of subnuclear protein complexes involved in diverse processes, such as transcription and splicing.


Human Mutation | 2011

Evidence of association of APOE with age‐related macular degeneration ‐ a pooled analysis of 15 studies

Gareth J. McKay; Christopher Patterson; Usha Chakravarthy; Shilpa Dasari; Caroline C. W. Klaver; Johannes R. Vingerling; Lintje Ho; Paulus T. V. M. de Jong; Astrid E. Fletcher; Ian S. Young; Johan H. Seland; Mati Rahu; G. Soubrane; Laura Tomazzoli; Fotis Topouzis; Jesús Vioque; Aroon D. Hingorani; Reecha Sofat; Michael Dean; Julie Sawitzke; Johanna M. Seddon; Inga Peter; Andrew R. Webster; Anthony T. Moore; John R.W. Yates; Valentina Cipriani; Lars G. Fritsche; Bernhard H. F. Weber; Claudia N. Keilhauer; Andrew J. Lotery

Age‐related macular degeneration (AMD) is the most common cause of incurable visual impairment in high‐income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low‐density cholesterol modulation. Potential interaction between APOE and sex, and smoking status has been reported. We present a pooled analysis (n = 21,160) demonstrating associations between late AMD and APOε4 (odds ratio [OR] = 0.72 per haplotype; confidence interval [CI]: 0.65–0.74; P = 4.41×10−11) and APOε2 (OR = 1.83 for homozygote carriers; CI: 1.04–3.23; P = 0.04), following adjustment for age group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR = 1.54; CI: 1.38–1.72; P = 2.8×10−15) and atrophic (OR = 1.38; CI: 1.18–1.61; P = 3.37×10−5) AMD but not early AMD (OR = 0.94; CI: 0.86–1.03; P = 0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyond ε2 and ε4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low‐density cholesterol specifically, in AMD disease etiology. 32:1407–1416, 2011. ©2011 Wiley Periodicals, Inc.

Collaboration


Dive into the Mohammad Othman's collaboration.

Top Co-Authors

Avatar

Anand Swaroop

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Brooks

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge