Mohammed Mainul Hoque
German Aerospace Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammed Mainul Hoque.
Radio Science | 2011
J. Feltens; Matthew Angling; Natasha Jackson-Booth; Norbert Jakowski; Mohammed Mainul Hoque; M. Hernández-Pajares; A. Aragon-Angel; R. Orús; R. Zandbergen
In the context of the European Space Agency/European Space Operations Centre funded Study A¢Â�Â�GNSS Contribution to Next Generation Global Ionospheric Monitoring,A¢Â�Â� four ionospheric models based on GNSS data (the Electron Density Assimilative Model, EDAM; the Ionosphere Monitoring Facility, IONMON v2; the Tomographic Ionosphere model, TOMION; and the Neustrelitz TEC Models, NTCM) have been run using a controlled set of input data. Each model output has been tested against differential slant TEC (dSTEC) truth data for high (May 2002) and low (December 2006) sunspot periods. Three of the models (EDAM, TOMION, and NTCM) produce dSTEC standard deviation results that are broadly consistent with each other and with standard deviation spreads of ~1 TECu for December 2006 and ~1.5 TECu for May 2002. The lowest reported standard deviation across all models and all stations was 0.99 TECu (EDAM, TLSE station for December 2006 night). However, the model with the best overall dSTEC performance was TOMION which has the lowest standard deviation in 28 out of 52 test cases (13 stations, two test periods, day and night). This is probably related to the interpolation techniques used in TOMION exploiting the spatial stationarity of vertical TEC error decorrelation.
Journal of Geophysical Research | 2015
Norbert Jakowski; Mohammed Mainul Hoque; Martin Kriegel; V. Patidar
The ionospheric Nighttime Winter Anomaly (NWA) was first reported more than three decades ago based on total electron content (TEC) and vertical sounding data. The aim of this paper is to provide further evidence that the NWA effect is a persistent feature in the Northern Hemisphere at the American and in the Southern Hemisphere at the Asian longitude sector under low solar activity conditions. The analysis of ground-based GPS derived TEC and peak electron density data from radio occultation measurements on Formosat-3/COSMIC satellites confirms and further supports the findings published in earlier NWA papers. So it has been confirmed and further specified that the NWA appears at longitude sectors where the displacement between the geomagnetic and the geographic equator maximizes. Here NWA peaks at around 40°–50° geomagnetic midlatitude supporting the idea that wind-induced plasma uplifting in the conjugated summer hemisphere is the main driving force for the accumulation of ionospheric plasma in the topside ionosphere and plasmasphere. In parallel, the midsummer nighttime anomaly (MSNA) is caused at the local ionosphere. Simultaneously, interhemispheric coupling causes severe downward plasma fluxes in the conjugated winter hemisphere during night causing the NWA at low solar activity. With increasing solar activity, the downward plasma fluxes lose their impact due to the much stronger increasing background ionization that masks the NWA. It is assumed that MSNA and related special anomalies such as the Weddell Sea Anomaly and the Okhotsk Sea Anomaly are closely related to the NWA via enhanced wind-induced uplifting of the ionosphere.
international conference on localization and gnss | 2012
Norbert Jakowski; Mohammed Mainul Hoque
Single frequency users of Global Navigation Satellite Systems (GNSS) need to correct link related ionospheric range errors of up to 100 m. Since this range error is proportional to the Total Electron Content (TEC) of the ionosphere, correction information can be provided by TEC maps deduced from corresponding GNSS measurements or by model values. In this paper we compare ionospheric correction models such as the Klobuchar (GPS) model, the NeQuick model, and the NTCM-GL model recently developed in DLR. It has been found that the NeQuick and NTCM-GL models show a similar performance which is by a factor of about 2 better than the performance of the Klobuchar model at the European sector. NTCM-GL needs only 12 coefficients and is fed by the solar radio flux index F10.7 to take into account the level of solar activity. Thus, the coefficients are fixed over a full solar cycle, no updating of coefficients is required. Hence, NTCM-GL may easily be used as a correction model for single frequency GNSS applications having a better performance than the Klobuchar model.
Gps Solutions | 2017
Mohammed Mainul Hoque; Norbert Jakowski; Jens Berdermann
Global Navigation Satellite Systems (GNSS) require mitigation of ionospheric propagation errors because the ionospheric range errors might be larger than tens of meters at the zenith direction. Taking advantage of the frequency-dispersive property of ionospheric refractivity, the ionospheric range errors can be mitigated in dual-frequency applications to a great extent by a linear combination of carrier phases or pseudoranges. However, single-frequency GNSS operations require additional ionospheric information to apply signal delay or range error corrections. To aid single-frequency operations, the global positioning system (GPS) broadcasts 8 coefficients as part of the navigation message to drive the ionospheric correction algorithm (ICA) also known as Klobuchar model. We presented here an ionospheric correction algorithm called Neustrelitz TEC model (NTCM) which can be used as complementary to the GPS ICA. Our investigation shows that the NTCM can be driven by Klobuchar model parameters to achieve a significantly better performance than obtained by the mother ICA algorithm. Our research, using post-processed reference total electron content (TEC) data from more than one solar cycle, shows that on average the RMS modeled TEC errors are up to 40% less for the proposed NTCM model compared to the Klobuchar model during high solar activity period, and about 10% less during low solar activity period. Such an approach does not require major technology changes for GPS users rather requires only introducing the NTCM approach a complement to the existing ICA algorithm while maintaining the simplicity of ionospheric range error mitigation with an improved model performance.
Gps Solutions | 2017
Simon Banville; Rafal Sieradzki; Mohammed Mainul Hoque; Kinga Wezka; Tomasz Hadas
Higher-order ionospheric effects, if not properly accounted for, can propagate into geodetic parameter estimates. For this reason, several investigations have led to the development and refinement of formulas for the correction of second- and third-order ionospheric errors, bending effects and total electron content variations due to excess path length. Standard procedures for computing higher-order terms typically rely on slant total electron content computed either from global ionospheric maps (GIMs) or using GNSS observations corrected using differential code biases (DCBs) provided by an external process. In this study, we investigate the feasibility of estimating slant ionospheric delay parameters accounting for both first- and second-order ionospheric effects directly within a precise point positioning (PPP) solution. It is demonstrated that proper handling of the receiver DCB is critical for the PPP method to provide unbiased estimates of the position. The proposed approach is therefore not entirely free from external inputs since GIMs are required for isolating the receiver DCB, unless the latter is provided to the PPP filter. In terms of positioning performance, the PPP approach is capable of mitigating higher-order ionospheric effects to the same level as existing approaches. Due to the inherent risks associated with constraining slant ionospheric delay parameters in PPP during disturbed ionospheric conditions, the reliability of the method can be greatly enhanced when the receiver DCB is available a priori, such as for permanent GNSS stations.
Archive | 2017
Mohammed Mainul Hoque; Norbert Jakowski; JensBerdermann
Ionospheric refraction is considered as one of the major accuracy limiting factors in microwave space-based geodetic techniques such as the Global Positioning System (GPS), Satellite Laser Ranging (SLR), very-long-baseline interferometry (VLBI), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), and satellite altimetry. Similarly, a high-performance ground-to-space and space-to-ground microwave link is considered to be very important for synchronizing clocks in global networks. Moreover, precise time and frequency transfer may lead to new applications in navigation, Earth observation, solar system science, and telecommunications. However, all transionospheric microwave signals are subject to ionospheric refraction and subsequent delays in the travel time. Since the ionosphere is a dispersive medium for radio signals, the first-order propagation effect can be removed by combining signals at two or more frequencies. Anyway, higher-order ionospheric effects remain uncorrected in such combinations. The residuals can significantly affect the accuracy of precise positioning, navigation, as well as the performance of time and frequency transfer. Here, we studied ionospheric propagation effects including higher-order terms for microwave signals up to 100 GHz frequencies. The possible combination between the L, S, C, X, Ku, and Ka band frequencies is studied for the first-order ionosphere-free solutions. We estimated the higher-order propagation effects such as the second- and third-order terms and ray-path bending effects in the dual-frequency group delay and phase advance computation. Moreover, the correction formulas originally developed for global navigation satellite systems (GNSS) L-band frequencies are tested for mitigating residual errors at higher frequencies up to 100 GHz.
Journal of Geodesy | 2007
Mohammed Mainul Hoque; Norbert Jakowski
Radio Science | 2008
Mohammed Mainul Hoque; Norbert Jakowski
Radio Science | 2011
Mohammed Mainul Hoque; Norbert Jakowski
Advances in Space Research | 2010
Mohammed Mainul Hoque; Norbert Jakowski