Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohana Krishna Reddy Mudiam is active.

Publication


Featured researches published by Mohana Krishna Reddy Mudiam.


International Journal of Developmental Neuroscience | 2009

Anti-apoptotic role of omega-3-fatty acids in developing brain: perinatal hypothyroid rat cerebellum as apoptotic model.

Rohit A. Sinha; Priyanka Khare; Asit Rai; Shailendra Kumar Maurya; Amrita Pathak; Vishwa Mohan; Geet Kumar Nagar; Mohana Krishna Reddy Mudiam; Madan M. Godbole; Sanghamitra Bandyopadhyay

Inadequate maternal intake of omega‐3‐fatty acids (ω3 FAs) causes adverse neurodevelopmental outcome in the progeny; however, their molecular mechanism of action is obscure. Since ω3 FAs are known to inhibit neuronal apoptosis during neuro‐degeneration, we investigated their possible contribution in regulating neuronal apoptosis during brain development. Using rat model of hypothyroidism‐induced neuronal apoptosis, we provide evidence for anti‐apoptotic role of ω3 FAs during cerebellar development. ω3 FAs were supplemented as a mixture of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to pregnant and lactating rats, and primary hypothyroidism was induced by administering methimazole. The cerebella from postnatal day 16 (d16) pups were isolated, and studies on apoptosis were conducted. We observed that ω3 FA‐supplementation significantly reduced DNA fragmentation and caspase‐3 activation in developing cerebellum of hypothyroid pups. The protection provided by ω3 FAs was associated with their ability to prevent increases in the level of pro‐apoptotic basal cell lymphoma protein‐2 (Bcl‐2)‐associated X protein (Bax) in the cerebellum during thyroid hormone (TH) deficiency. ω3 FAs increased the levels of anti‐apoptotic proteins like Bcl‐2 and Bcl‐extra large (Bcl‐xL), known to be repressed in hypothyroidism. ω3 FAs also restored levels of cerebellar phospho (p)‐AKT, phospho‐extracellular regulated kinase (p‐ERK) and phospho‐c‐Jun N‐terminal kinase (p‐JNK), which were altered by hypothyroid insults, without interfering with the expression of TH responsive gene, myelin basic protein (mbp). Taken together, these results supplement an insight into the molecular mechanism of action of ω3 FAs in developing brain that involves regulation of apoptotic signaling pathways under stress.


Food Chemistry | 2013

Simultaneous derivatisation and preconcentration of parabens in food and other matrices by isobutyl chloroformate and dispersive liquid-liquid microextraction followed by gas chromatographic analysis.

Rajeev Jain; Mohana Krishna Reddy Mudiam; Abhishek Chauhan; Ratnasekhar Ch; R.C. Murthy; Haider A. Khan

A simple, rapid and economical method has been proposed for the quantitative determination of parabens (methyl, ethyl, propyl and butyl paraben) in different samples (food, cosmetics and water) based on isobutyl chloroformate (IBCF) derivatisation and preconcentration using dispersive liquid-liquid microextraction in single step. Under optimum conditions, solid samples were extracted with ethanol (disperser solvent) and 200 μL of this extract along with 50 μL of chloroform (extraction solvent) and 10 μL of IBCF was rapidly injected into 2 mL of ultra-pure water containing 150 μL of pyridine to induce formation of a cloudy state. After centrifugation, 1 μL of the sedimented phase was analysed using gas chromatograph-flame ionisation detector (GC-FID) and the peaks were confirmed using gas chromatograph-positive chemical ionisation-mass spectrometer (GC-PCI-MS). Method was found to be linear over the range of 0.1-10 μg mL(-1) with square of correlation coefficient (R(2)) in the range of 0.9913-0.9992. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029-0.102 μg mL(-1) and 0.095-0.336 μg mL(-1) with a signal to noise ratio of 3:1 and 10:1, respectively.


Journal of Pharmaceutical and Biomedical Analysis | 2012

Development, validation and comparison of two microextraction techniques for the rapid and sensitive determination of pregabalin in urine and pharmaceutical formulations after ethyl chloroformate derivatization followed by gas chromatography–mass spectrometric analysis

Mohana Krishna Reddy Mudiam; Abhishek Chauhan; Rajeev Jain; Ratnasekhar Ch; Ghizal Fatima; Ekta Malhotra; R.C. Murthy

The present article reports first time the use of solid-phase microextraction (SPME) and dispersive liquid-liquid microextraction (DLLME) to extract pregabalin (PRG) from urine and pharmaceutical formulations followed by GC-MS analysis after ethyl chloroformate (ECF) derivatization. PRG is an antiepileptic and analgesic drug, which is a structural analogue of γ-amino-butyric acid (GABA). It is approved by Food and Drug Administration (FDA) for the treatment of central nervous system (CNS) disorders and neuropathic pain. Initially PRG was derivatized with ECF in the presence of pyridine at room temperature for 30s. Experimental parameters were investigated for derivatization, SPME and DLLME conditions. The limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.019 μg/ml and 0.063 μg/ml for SPME and 0.022 μg/ml and 0.075 μg/ml for DLLME respectively. The percentage recovery, in case of SPME was in the range of 83-98% while for DLLME it is in the range of 84-98%. The intra and inter-day precisions were found to be less than 6%. The developed methods after ECF derivatization were found to be simple, fast, efficient and inexpensive. DLLME has several advantages like lesser extraction time and cost effectiveness as compared to SPME. The developed methods may find wide application for the routine determination of PRG in biological as well as in quality control samples of pharmaceutical formulations.


Journal of Hazardous Materials | 2012

Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions.

R. L. Singh; Virendra Misra; Mohana Krishna Reddy Mudiam; L.K.S. Chauhan; Rana Pratap Singh

This study investigates the degradation pathway of gamma-hexachlorocyclohexane (γ-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe(0) bimetallic nanoparticles (CMC-Pd/nFe(0)). GC-MS analysis of γ-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of γ-HCH has been proposed. Batch studies showed complete γ-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe(0) within 6h of incubation. The surface area normalized rate constant (k(SA)) was found to be 7.6 × 10(-2) L min(-1)m(-2). CMC-Pd/nFe(0) displayed ≈ 7-fold greater efficiency for γ-HCH degradation in comparison to Fe(0) nanoparticles (nFe(0)), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe(0) loading and reaction temperature facilitates γ-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial γ-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that γ-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of γ-HCH contaminated soil using CMC-Pd/nFe(0) has been discussed.


Journal of Chromatography B | 2012

Rapid and simultaneous determination of twenty amino acids in complex biological and food samples by solid-phase microextraction and gas chromatography-mass spectrometry with the aid of experimental design after ethyl chloroformate derivatization.

Mohana Krishna Reddy Mudiam; Ratnasekhar Ch; Rajeev Jain; Prem Narain Saxena; Abhishek Chauhan; R.C. Murthy

Amino acids play a vital role as intermediates in many important metabolic pathways such as the biosynthesis of nucleotides, vitamins and secondary metabolites. A sensitive and rapid analytical method has been proposed for the first time for the simultaneous determination of twenty amino acids using solid-phase microextraction (SPME). The protein samples were hydrolyzed by 6M HCl under microwave radiation for 120 min. Then the amino acids were derivatized by ethyl chloroformate (ECF) and the ethoxy carbonyl ethyl esters of amino acids formed were extracted using SPME by direct immersion. Finally the extracted analytes on the SPME fiber were desorbed at 260°C and analyzed by gas chromatography-mass spectrometer (GC-MS) in electron ionization mode. Factors which affect the SPME efficiency were screened by Plackett-Burmann design; most significant factors were optimized with response surface methodology. The optimum conditions for SPME are as follows: pH of 1.7, ionic strength of 733 mg, extraction time of 30 min and fiber of divinyl benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS). The recovery of all the amino acids was found to be in the range of 89.17-100.98%. The limit of detection (LOD) of all derivatized amino acids in urine, hair and soybean was found to be in the range of 0.20-7.52 μg L(-1), 0.21-8.40 μg L(-1) and 0.18-5.62 μg L(-1), respectively. Finally, the proposed technique was successfully applied for the determination of amino acids in complex biological (hair, urine) and food samples (soybean). The method can find wide applications in the routine analysis of amino acids in any biological as well as food samples.


International Journal of Hygiene and Environmental Health | 2013

Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells.

Deepak Gurbani; Santosh Kumar Bharti; Ashutosh Kumar; Alok K. Pandey; Godson Ana; Ambrish Verma; Altaf Husain Khan; Devendra Kumar Patel; Mohana Krishna Reddy Mudiam; Swatantra Kumar Jain; Raja Roy; Alok Dhawan

The release of particulate pollutants into the air through burning of coal, crude oil, diesel, coal tar, etc. raises concerns of potential health hazards to the exposed human population. Polycyclic aromatic hydrocarbons (PAHs) are major toxic constituents of particulate matter (PM), which upon ingestion get metabolized to even more toxic metabolites such as quinones. The PAHs levels were assessed in both respirable particulate matter (RSPM, <10μM size) and suspended particulate matter (SPM, >10μM size) of urban ambient air (UAA) and that of major contributors viz. diesel exhaust particles (DEPs) and coal tar combustions emissions (CTCE). Seven US Environmental Protection Agency (USEPA) prioritized PAHs in RSPM and 10 in SPM were detected in UAA. Ten and 15 prioritized PAHs, respectively, were also detected in diesel exhaust particles (DEP) and coal tar combustion emission (CTCE) evidencing their release in the air. These PM associated PAHs for UAA, DEP and CTCE showed significant increase (p<0.05) in mutagenicity and mammalian genotoxicity in the order CTCE>DEP>UAA. Human lung alveolar (A549) and bronchiolar (BEAS-2B) cells when treated with PAH-metabolites viz. 1,4-benzoquinone (1,4-BQ), hydroquinone (HQ), 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ) and 9,10-phenanthroquinone (9,10-PQ) showed metabolic modulation in these cell lines with significant depletion of principal cellular metabolites viz. NADP, uracil, asparagines, glutamine, and histidine and accumulation of di-methyl amine and beta-hydroxybutyrate, identified using (1)H NMR spectroscopy. These results suggest that PAH-quinones induce genotoxic effects by modulating the metabolic machinery inside the cells by a combined effect of oxidative stress and energy depletion. Our data for metabolic profiling of human lung cells could also help in understanding the mechanism of toxicity of other xenobiotics.


Journal of Chromatography A | 2013

Ultra sound assisted one step rapid derivatization and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometric determination of amino acids in complex matrices

Mohana Krishna Reddy Mudiam; Ch. Ratnasekhar

A rapid and economical method for the simultaneous determination of 20 amino acids in complex biological and food matrices (hair, urine and soybean seed samples) has been developed using ultrasound assisted dispersive liquid-liquid micro extraction (UA-DLLME). The method involves simultaneous derivatization and extraction followed by gas chromatography-mass spectrometric (GC-MS) analysis of amino acids. The parameters of UA-DLLME were optimized with the aid of design of experiments approach. The procedure involves the rapid injection of mixture of acetonitrile (disperser solvent), trichloroethylene (TCE) (extraction solvent) and ethylchloroformate (derivatization reagent) into the aqueous phase of sample extract containing pyridine. The Plackett-Burman design has indicated that, the factors such as volume of disperser and extraction solvents and pH were found to be significantly affects the extraction efficiency of the method. The optimum conditions of these factors based on central composite design were found to be 250μL of acetonitrile, 80μL of TCE and pH of 10. The limit of detection and limit of quantification were found to be in the range of 0.36-3.68μgL(-1) and 1.26-12.01μgL(-1) respectively. This is the first application of DLLME for the analysis of amino acids in any matrices. The advantages like (i) in situ derivatization and extraction of amino acids without any prior lyophilization and cleanup of sample, (ii) low consumption of extraction solvent, (iii) fast and simple, (iv) cost-effective and (iv) good repeatability make the method amenable for the routine analysis of amino acids in clinical, toxicological, nutritional and quality control laboratories.


Nanotoxicology | 2015

Metabolomics reveals the perturbations in the metabolome of Caenorhabditis elegans exposed to titanium dioxide nanoparticles

Ch. Ratnasekhar; Madhavi Sonane; Aruna Satish; Mohana Krishna Reddy Mudiam

Abstract The increasing use of nanotechnology in our daily life can have many unintended effects and pose adverse impact on human health, environment and ecosystems. Wider application of engineered nanoparticles, especially TiO2 nanoparticles (TiO2 NP) necessitates the understanding of toxicity and mechanism of action. Metabolomics provides a unique opportunity to find out biomarkers of nanoparticles exposure, which leads to the identification of cellular pathways and their biological mechanisms. Gas chromatography mass spectrometry (GC–MS)-based metabolomics approach was used in the present study to understand the toxicity of sub-lethal concentrations (7.7 and 38.5 µg/ml) of TiO2 NP (<25 nm) in well-known, soil nematode Caenorhabditis elegans (C. elegans). Multivariate pattern recognition analysis reflected the perturbations in the metabolism (amino acids, organic acids, sugars) of C. elegans on exposure to TiO2 NP. The biological pathways affected due to the exposure of TiO2 NP were identified, among them mainly affected pathways are tricarboxylic acid (TCA) cycle, arachidonic acid metabolism and glyoxalate dicarobxylate metabolism. The manifestation of differential metabolic profile in organism exposed to TiO2 (NP or bulk particle) was witnessed as an effect on reproduction. The present study demonstrates that metabolomics can be employed as a tool to understand the potential toxicity of nanoparticles in terms of organism–environment interactions as well as in assessing the organism function at the molecular level.


Scientific Reports | 2016

Physico-Chemical Condition Optimization during Biosynthesis lead to development of Improved and Catalytically Efficient Gold Nano Particles

Madhuree Kumari; Aradhana Mishra; Shipra Pandey; Satyendra P. Singh; Vasvi Chaudhry; Mohana Krishna Reddy Mudiam; Shatrunajay Shukla; Poonam Kakkar; Chandra Shekhar Nautiyal

Biosynthesis of nanoparticles has gained great attention in making the process cost-effective and eco-friendly, but there are limited reports which describe the interdependency of physical parameters for tailoring the dimension and geometry of nanoparticles during biological synthesis. In the present study, gold nanoparticles (GNPs) of various shapes and sizes were obtained by modulating different physical parameters using Trichoderma viride filtrate. The particles were characterized on the basis of visual observation, dynamic light scattering, UV-visible spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, and X ray diffraction. While the size varied from 2–500 nm, the shapes obtained were nanospheres, nanotriangles, nanopentagons, nanohexagons, and nanosheets. Changing the parameters such as pH, temperature, time, substrate, and culture filtrate concentration influenced the size and geometry of nanoparticles. Catalytic activity of the biosynthesized GNP was evaluated by UV-visible spectroscopy and confirmed by gas chromatography-mass spectrometric analysis for the conversion of 4-nitrophenol into 4-aminophenol which was strongly influenced by their structure and dimension. Common practices for biodegradation are traditional, expensive, require large amount of raw material, and time taking. Controlling shapes and sizes of nanoparticles could revolutionize the process of biodegradation that can remove all the hurdles in current scenario.


Journal of Chromatography B | 2012

Low density solvent based dispersive liquid–liquid microextraction with gas chromatography–electron capture detection for the determination of cypermethrin in tissues and blood of cypermethrin treated rats

Mohana Krishna Reddy Mudiam; Rajeev Jain; Shailendra Kumar Maurya; Haider A. Khan; Sanghamitra Bandyopadhyay; R.C. Murthy

A simple and rapid method to determine the cypermethrin (CYP) insecticide in rat tissues (kidney, liver and brain) and blood has been developed for the first time using low density solvent-dispersive liquid-liquid microextraction (LDS-DLLME) followed by gas chromatography-electron capture detector (GC-ECD) analysis. Initially, tissue samples containing CYP were homoginized in acetone. Subsequently, homogenate was mixed with n-hexane (extraction solvent) and the mixture was rapidly injected into water. The upper n-hexane layer was collected in a separate microtube and injected into GC-ECD for analysis. Blood samples were diluted with ultrapure water and subjected to DLLME through similar procedure. Parameters such as type and volume of disperser and extraction solvent, salting out effect and extraction time, which can affect the extraction efficiency of DLLME, were optimized. Method was validated by investigating linearity, precision, recovery, limit of detection (LOD) and quantification (LOQ). LODs in tissue were in the range of 0.043-0.314 ng mg(-1) and for blood it was 8.6 ng mL(-1) with a signal to noise ratio of 3:1. LOQs in tissue were in the range of 0.143-1.03 ng mg(-1) and for blood it was 28.3 ng mL(-1) with a signal to noise ratio of 10:1. Mean recoveries of CYP at three different concentation levels in all the matrices were found to be in the range of 81.6-103.67%. The results show that, LDS-DLLME coupled with GC-ECD offers a simple, rapid and efficient technique for extraction and determination of CYP in rat tissues and blood samples, which in turn would be useful for toxicological studies of CYP.

Collaboration


Dive into the Mohana Krishna Reddy Mudiam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abhishek Chauhan

Academy of Scientific and Innovative Research

View shared research outputs
Top Co-Authors

Avatar

Ratnasekhar Ch

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

R.C. Murthy

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Prem Narain Saxena

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Manoj Kumar Gupta

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Ch. Ratnasekhar

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Devendra Kumar Patel

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Gubbala Naga Venkata Satyanarayana

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge