Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohini M. Konai is active.

Publication


Featured researches published by Mohini M. Konai.


Journal of Medicinal Chemistry | 2014

Small Molecular Antibacterial Peptoid Mimics: The Simpler the Better!

Chandradhish Ghosh; Goutham B. Manjunath; Padma Akkapeddi; Venkateswarlu Yarlagadda; Jiaul Hoque; Divakara S. S. M. Uppu; Mohini M. Konai; Jayanta Haldar

The emergence of multidrug resistant bacteria compounded by the depleting arsenal of antibiotics has accelerated efforts toward development of antibiotics with novel mechanisms of action. In this report, we present a series of small molecular antibacterial peptoid mimics which exhibit high in vitro potency against a variety of Gram-positive and Gram-negative bacteria, including drug-resistant species such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. The highlight of these compounds is their superior activity against the major nosocomial pathogen Pseudomonas aeruginosa. Nontoxic toward mammalian cells, these rapidly bactericidal compounds primarily act by permeabilization and depolarization of bacterial membrane. Synthetically simple and selectively antibacterial, these compounds can be developed into a newer class of therapeutic agents against multidrug resistant bacterial species.


ACS Applied Materials & Interfaces | 2015

Broad Spectrum Antibacterial and Antifungal Polymeric Paint Materials: Synthesis, Structure–Activity Relationship, and Membrane-Active Mode of Action

Jiaul Hoque; Padma Akkapeddi; Vikas Yadav; Goutham B. Manjunath; Divakara S. S. M. Uppu; Mohini M. Konai; Venkateswarlu Yarlagadda; Kaustuv Sanyal; Jayanta Haldar

Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint.


Journal of Medicinal Chemistry | 2014

Membrane Active Phenylalanine Conjugated Lipophilic Norspermidine Derivatives with Selective Antibacterial Activity

Mohini M. Konai; Chandradhish Ghosh; Venkateswarlu Yarlagadda; Sandip Samaddar; Jayanta Haldar

Natural and synthetic membrane active antibacterial agents offer hope as potential solutions to the problem of bacterial resistance as the membrane-active nature imparts low propensity for the development of resistance. In this report norspermidine based antibacterial molecules were developed that displayed excellent antibacterial activity against various wild-type bacteria (Gram-positive and Gram-negative) and drug-resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and β-lactam-resistant Klebsiella pneumoniae). In a novel structure-activity relationship study it has been shown how incorporation of an aromatic amino acid drastically improves selective antibacterial activity. Additionally, the effect of stereochemistry on activity, toxicity, and plasma stability has also been studied. These rapidly bactericidal, membrane active antibacterial compounds do not trigger development of resistance in bacteria and hence bear immense potential as therapeutic agents to tackle multidrug resistant bacterial infections.


Journal of Medicinal Chemistry | 2015

Membrane Active Small Molecules Show Selective Broad Spectrum Antibacterial Activity with No Detectable Resistance and Eradicate Biofilms

Jiaul Hoque; Mohini M. Konai; Spandhana Gonuguntla; Goutham B. Manjunath; Sandip Samaddar; Venkateswarlu Yarlagadda; Jayanta Haldar

Treating bacterial biofilms with conventional antibiotics is limited due to ineffectiveness of the drugs and higher propensity to develop bacterial resistance. Development of new classes of antibacterial therapeutics with alternative mechanisms of action has become imperative. Herein, we report the design, synthesis, and biological evaluations of novel membrane-active small molecules featuring two positive charges, four nonpeptidic amide groups, and variable hydrophobic/hydrophilic (amphiphilic) character. The biocides synthesized via a facile methodology not only displayed good antibacterial activity against wild-type bacteria but also showed high activity against various drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and β-lactam-resistant Klebsiella pneumoniae. Further, these biocides not only inhibited the formation of biofilms but also disrupted the established S. aureus and E. coli biofilms. The membrane-active biocides hindered the propensity to develop bacterial resistance. Moreover, the biocides showed negligible toxicity against mammalian cells and thus bear potential to be used as therapeutic agents.


ACS Infectious Diseases | 2015

Lysine-Based Small Molecules That Disrupt Biofilms and Kill both Actively Growing Planktonic and Nondividing Stationary Phase Bacteria

Mohini M. Konai; Jayanta Haldar

The emergence of bacterial resistance is a major threat to global health. Alongside this issue, formation of bacterial biofilms is another cause of concern because most antibiotics are ineffective against these recalcitrant microbial communities. Ideal future antibacterial therapeutics should possess both antibacterial and anti-biofilm activities. In this study we engineered lysine-based small molecules, which showed not only commendable broad-spectrum antibacterial activity but also potent biofilm-disrupting properties. Synthesis of these lipophilic lysine-norspermidine conjugates was achieved in three simple reaction steps, and the resultant molecules displayed potent antibacterial activity against various Gram-positive (Staphylococcus aureus, Enterococcus faecium) and Gram-negative bacteria (Escherichia coli) including drug-resistant superbugs MRSA (methicillin-resistant S. aureus), VRE (vancomycin-resistant E. faecium), and β-lactam-resistant Klebsiella pneumoniae. An optimized compound in the series showed activity against planktonic bacteria in the concentration range of 3-10 μg/mL, and bactericidal activity against stationary phase S. aureus was observed within an hour. The compound also displayed about 120-fold selectivity toward both classes of bacteria (S. aureus and E. coli) over human erythrocytes. This rapidly bactericidal compound primarily acts on bacteria by causing significant membrane depolarization and K(+) leakage. Most importantly, the compound disrupted preformed biofilms of S. aureus and did not trigger bacterial resistance. Therefore, this class of compounds has high potential to be developed as future antibacterial drugs for treating infections caused by planktonic bacteria as well as bacterial biofilms.


The Journal of Antibiotics | 2015

Tackling vancomycin-resistant bacteria with 'lipophilic-vancomycin-carbohydrate conjugates'.

Venkateswarlu Yarlagadda; Mohini M. Konai; Goutham B. Manjunath; Chandradhish Ghosh; Jayanta Haldar

Vancomycin, a glycopeptide antibiotic, has long been a drug of choice for life-threatening Gram-positive bacterial infections. Vancomycin confers its antibacterial activity by inhibiting bacterial cell wall biosynthesis. However, over the time, vancomycin has also been rendered ineffective by vancomycin-resistant bacteria (VRB). These bacteria developed resistance to it by alteration of cell wall precursor from D-Ala-D-Ala to D-Ala-D-Lac (vancomycin-resistant Enterococci, VRE), which leads to manifold reduction in the binding constant and results in the loss of antibacterial activity. Herein, we report various vancomycin–sugar analogs, based on a simple design rationale, which exhibit increased binding affinity to VRB, thereby resensitizing VRB to vancomycin. Optimized vancomycin–sugar conjugate exhibited 150-fold increase in affinity for N,N′-diacetyl-Lys-D-Ala-D-Lac compared with vancomycin. This improved binding affinity was also reflected in its antibacterial activity, wherein the MIC value was brought down from 750 to 36 μM against VRE (VanA phenotype). To further sensitize against VRE, we appended lipophilic alkyl chain to optimized vancomycin–sugar conjugate. This lipophilic–vancomycin–sugar conjugate was >1000-fold (MIC=0.7 μM) and 250-fold (MIC=1 μM) more effective against VanA and VanB strains of VRE, respectively, compared with vancomycin. Therefore, this synthetically simple approach could lead to the development of new generation of glycopeptide antibiotics, which can be clinically used to tackle VRB infections.


PLOS ONE | 2015

Aryl-Alkyl-Lysines: Agents That Kill Planktonic Cells, Persister Cells, Biofilms of MRSA and Protect Mice from Skin-Infection

Chandradhish Ghosh; Goutham B. Manjunath; Mohini M. Konai; Divakara S. S. M. Uppu; Jiaul Hoque; Krishnamoorthy Paramanandham; Bibek R. Shome; Jayanta Haldar

Development of synthetic strategies to combat Staphylococcal infections, especially those caused by methicillin resistant Staphyloccus aureus (MRSA), needs immediate attention. In this manuscript we report the ability of aryl-alkyl-lysines, simple membrane active small molecules, to treat infections caused by planktonic cells, persister cells and biofilms of MRSA. A representative compound, NCK-10, did not induce development of resistance in planktonic cells in multiple passages and retained activity in varying environments of pH and salinity. At low concentrations the compound was able to depolarize and permeabilize the membranes of S. aureus persister cells rapidly. Treatment with the compound not only eradicated pre-formed MRSA biofilms, but also brought down viable counts in bacterial biofilms. In a murine model of MRSA skin infection, the compound was more effective than fusidic acid in bringing down the bacterial burden. Overall, this class of molecules bears potential as antibacterial agents against skin-infections.


Biomacromolecules | 2016

Side Chain Degradable Cationic-Amphiphilic Polymers with Tunable Hydrophobicity Show in Vivo Activity

Divakara S. S. M. Uppu; Sandip Samaddar; Jiaul Hoque; Mohini M. Konai; Paramanandham Krishnamoorthy; B. R. Shome; Jayanta Haldar

Cationic-amphiphilic antibacterial polymers with optimal amphiphilicity generally target the bacterial membranes instead of mammalian membranes. To date, this balance has been achieved by varying the cationic charge or side chain hydrophobicity in a variety of cationic-amphiphilic polymers. Optimal hydrophobicity of cationic-amphiphilic polymers has been considered as the governing factor for potent antibacterial activity yet minimal mammalian cell toxicity. However, the concomitant role of hydrogen bonding and hydrophobicity with constant cationic charge in the interactions of antibacterial polymers with bacterial membranes is not understood. Also, degradable polymers that result in nontoxic degradation byproducts offer promise as safe antibacterial agents. Here we show that amide- and ester (degradable)-bearing cationic-amphiphilic polymers with tunable side chain hydrophobicity can modulate antibacterial activity and cytotoxicity. Our results suggest that an amide polymer can be a potent antibacterial agent with lower hydrophobicity whereas the corresponding ester polymer needs a relatively higher hydrophobicity to be as effective as its amide counterpart. Our studies reveal that at higher hydrophobicities both amide and ester polymers have similar profiles of membrane-active antibacterial activity and mammalian cell toxicity. On the contrary, at lower hydrophobicities, amide and ester polymers are less cytotoxic, but the former have potent antibacterial and membrane activity compared to the latter. Incorporation of amide and ester moieties made these polymers side chain degradable, with amide polymers being more stable than the ester polymers. Further, the polymers are less toxic, and their degradation byproducts are nontoxic to mice. More importantly, the optimized amide polymer reduces the bacterial burden of burn wound infections in mice models. Our design introduces a new strategy of interplay between the hydrophobic and hydrogen bonding interactions keeping constant cationic charge density for developing potent membrane-active antibacterial polymers with minimal toxicity to mammalian cells.


ACS Infectious Diseases | 2016

Aryl-alkyl-lysines: Membrane-Active Small Molecules Active against Murine Model of Burn Infection.

Chandradhish Ghosh; Goutham B. Manjunath; Mohini M. Konai; Divakara S. S. M. Uppu; Krishnamoorthy Paramanandham; Bibek R. Shome; Raju Ravikumar; Jayanta Haldar

Infections caused by drug-resistant Gram-negative pathogens continue to be significant contributors to human morbidity. The recent advent of New Delhi metallo-β-lactamase-1 (blaNDM-1) producing pathogens, against which few drugs remain active, has aggravated the problem even further. This paper shows that aryl-alkyl-lysines, membrane-active small molecules, are effective in treating infections caused by Gram-negative pathogens. One of the compounds of the study was effective in killing planktonic cells as well as dispersing biofilms of Gram-negative pathogens. The compound was extremely effective in disrupting preformed biofilms and did not select resistant bacteria in multiple passages. The compound retained activity in different physiological conditions and did not induce any toxic effect in female Balb/c mice until concentrations of 17.5 mg/kg. In a murine model of Acinetobacter baumannii burn infection, the compound was able to bring the bacterial burden down significantly upon topical application for 7 days.


International Journal of Antimicrobial Agents | 2015

In vivo antibacterial activity and pharmacological properties of the membrane-active glycopeptide antibiotic YV11455.

Venkateswarlu Yarlagadda; Mohini M. Konai; Goutham B. Manjunath; Relekar G. Prakash; Bhuvana Mani; Krishnamoorthy Paramanandham; Shome B. Ranjan; Raju Ravikumar; Subhankari Prasad Chakraborty; Somenath Roy; Jayanta Haldar

The membrane-active glycopeptide antibiotic YV11455 is a lipophilic cationic vancomycin analogue that demonstrates rapid and concentration-dependent killing of clinically relevant multidrug-resistant (MDR) Gram-positive bacteria in vitro. YV11455 was 2-fold and 54-270-fold more effective than vancomycin against clinical isolates of vancomycin-sensitive and vancomycin-resistant bacteria, respectively. In this study, the in vivo efficacy, pharmacodynamics, pharmacokinetics and acute toxicology of YV11455 were investigated. In vivo activity and pharmacodynamics were determined in the neutropenic mouse thigh infection model against meticillin-resistant Staphylococcus aureus (MRSA). YV11455 produced dose-dependent reductions in MRSA titres in thigh muscle. When administered intravenously, the 50% effective dose (ED(50)) for YV11455 against MRSA was found to be 3.3 mg/kg body weight, and titres were reduced by up to ca. 3log(10)CFU/g from pre-treatment values at a dosage of 12 mg/kg with single treatment. Single-dose pharmacokinetic studies demonstrated linear kinetics and a prolonged half-life, with an increase in drug exposure (area under the concentration-time curve) compared with vancomycin. The peak plasma concentration following an intravenous dose of 12 mg/kg was 543.5 μg/mL. Acute toxicology studies revealed that YV11455 did not cause any significant alterations in biochemical parameters or histological pictures related to major organs such as the liver and kidney at its pharmacodynamic endpoint (ED(3-log kill)). These findings collectively suggest that YV11455 could be used clinically for the treatment of infections caused by MDR Gram-positive bacteria.

Collaboration


Dive into the Mohini M. Konai's collaboration.

Top Co-Authors

Avatar

Jayanta Haldar

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Sandip Samaddar

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Chandradhish Ghosh

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Goutham B. Manjunath

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Jiaul Hoque

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Venkateswarlu Yarlagadda

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Divakara S. S. M. Uppu

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Krishnamoorthy Paramanandham

Indian Council of Agricultural Research

View shared research outputs
Top Co-Authors

Avatar

Bibek R. Shome

Indian Council of Agricultural Research

View shared research outputs
Top Co-Authors

Avatar

Utsarga Adhikary

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge