Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Molly B. D. Prigge is active.

Publication


Featured researches published by Molly B. D. Prigge.


Brain | 2014

Longitudinal changes in cortical thickness in autism and typical development.

Brandon A. Zielinski; Molly B. D. Prigge; Jared A. Nielsen; Alyson L. Froehlich; Tracy J. Abildskov; Jeffrey S. Anderson; P. Thomas Fletcher; Kristen Zygmunt; Brittany G. Travers; Nicholas Lange; Andrew L. Alexander; Erin D. Bigler; Janet E. Lainhart

The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3-36 years) and 60 males with typical development (mean age = 18 years; range 4-39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and paracentral, lateral orbitofrontal, and lateral occipital regions. We suggest that abnormal cortical development in autism spectrum disorders undergoes three distinct phases: accelerated expansion in early childhood, accelerated thinning in later childhood and adolescence, and decelerated thinning in early adulthood. Moreover, cortical thickness abnormalities in autism spectrum disorders are region-specific, vary with age, and may remain dynamic well into adulthood.


Autism Research | 2015

Longitudinal Volumetric Brain Changes in Autism Spectrum Disorder Ages 6–35 Years

Nicholas Lange; Brittany G. Travers; Erin D. Bigler; Molly B. D. Prigge; Alyson L. Froehlich; Jared A. Nielsen; Annahir N. Cariello; Brandon A. Zielinski; Jeffrey S. Anderson; P. Thomas Fletcher; Andrew A. Alexander; Janet E. Lainhart

Since the impairments associated with autism spectrum disorder (ASD) tend to persist or worsen from childhood into adulthood, it is of critical importance to examine how the brain develops over this growth epoch. We report initial findings on whole and regional longitudinal brain development in 100 male participants with ASD (226 high‐quality magnetic resonance imaging [MRI] scans; mean inter‐scan interval 2.7 years) compared to 56 typically developing controls (TDCs) (117 high‐quality scans; mean inter‐scan interval 2.6 years) from childhood into adulthood, for a total of 156 participants scanned over an 8‐year period. This initial analysis includes between one and three high‐quality scans per participant that have been processed and segmented to date, with 21% having one scan, 27% with two scans, and 52% with three scans in the ASD sample; corresponding percentages for the TDC sample are 30%, 30%, and 40%. The proportion of participants with multiple scans (79% of ASDs and 68% of TDCs) was high in comparison to that of large longitudinal neuroimaging studies of typical development. We provide volumetric growth curves for the entire brain, total gray matter (GM), frontal GM, temporal GM, parietal GM, occipital GM, total cortical white matter (WM), corpus callosum, caudate, thalamus, total cerebellum, and total ventricles. Mean volume of cortical WM was reduced significantly. Mean ventricular volume was increased in the ASD sample relative to the TDCs across the broad age range studied. Decreases in regional mean volumes in the ASD sample most often were due to decreases during late adolescence and adulthood. The growth curve of whole brain volume over time showed increased volumes in young children with autism, and subsequently decreased during adolescence to meet the TDC curve between 10 and 15 years of age. The volume of many structures continued to decline atypically into adulthood in the ASD sample. The data suggest that ASD is a dynamic disorder with complex changes in whole and regional brain volumes that change over time from childhood into adulthood. Autism Res 2015, 8: 82–93.


PLOS ONE | 2012

scMRI Reveals Large-Scale Brain Network Abnormalities in Autism

Brandon A. Zielinski; Jeffrey S. Anderson; Alyson L. Froehlich; Molly B. D. Prigge; Jared A. Nielsen; Jason R. Cooperrider; Annahir N. Cariello; P. Thomas Fletcher; Andrew L. Alexander; Nicholas Lange; Erin D. Bigler; Janet E. Lainhart

Autism is a complex neurological condition characterized by childhood onset of dysfunction in multiple cognitive domains including socio-emotional function, speech and language, and processing of internally versus externally directed stimuli. Although gross brain anatomic differences in autism are well established, recent studies investigating regional differences in brain structure and function have yielded divergent and seemingly contradictory results. How regional abnormalities relate to the autistic phenotype remains unclear. We hypothesized that autism exhibits distinct perturbations in network-level brain architecture, and that cognitive dysfunction may be reflected by abnormal network structure. Network-level anatomic abnormalities in autism have not been previously described. We used structural covariance MRI to investigate network-level differences in gray matter structure within two large-scale networks strongly implicated in autism, the salience network and the default mode network, in autistic subjects and age-, gender-, and IQ-matched controls. We report specific perturbations in brain network architecture in the salience and default-mode networks consistent with clinical manifestations of autism. Extent and distribution of the salience network, involved in social-emotional regulation of environmental stimuli, is restricted in autism. In contrast, posterior elements of the default mode network have increased spatial distribution, suggesting a ‘posteriorization’ of this network. These findings are consistent with a network-based model of autism, and suggest a unifying interpretation of previous work. Moreover, we provide evidence of specific abnormalities in brain network architecture underlying autism that are quantifiable using standard clinical MRI.


Neuropsychologia | 2014

Longitudinal processing speed impairments in males with autism and the effects of white matter microstructure.

Brittany G. Travers; Erin D. Bigler; Do P. M. Tromp; Nagesh Adluru; Alyson L. Froehlich; Chad Ennis; Nicholas Lange; Jared A. Nielsen; Molly B. D. Prigge; Andrew L. Alexander; Janet E. Lainhart

The present study used an accelerated longitudinal design to examine group differences and age-related changes in processing speed in 81 individuals with autism spectrum disorder (ASD) compared to 56 age-matched individuals with typical development (ages 6-39 years). Processing speed was assessed using the Wechsler Intelligence Scale for Children-3rd edition (WISC-III) and the Wechsler Adult Intelligence Scale-3rd edition (WAIS-III). Follow-up analyses examined processing speed subtest performance and relations between processing speed and white matter microstructure (as measured with diffusion tensor imaging [DTI] in a subset of these participants). After controlling for full scale IQ, the present results show that processing speed index standard scores were on average 12 points lower in the group with ASD compared to the group with typical development. There were, however, no significant group differences in standard score age-related changes within this age range. For subtest raw scores, the group with ASD demonstrated robustly slower processing speeds in the adult versions of the IQ test (i.e., WAIS-III) but not in the child versions (WISC-III), even though age-related changes were similar in both the ASD and typically developing groups. This pattern of results may reflect difficulties that become increasingly evident in ASD on more complex measures of processing speed. Finally, DTI measures of whole-brain white matter microstructure suggested that fractional anisotropy (but not mean diffusivity, radial diffusivity, or axial diffusivity) made significant but small-sized contributions to processing speed standard scores across our entire sample. Taken together, the present findings suggest that robust decreases in processing speed may be present in ASD, more pronounced in adulthood, and partially attributable to white matter microstructural integrity.


Autism Research | 2013

Longitudinal Heschl’s gyrus growth during childhood and adolescence in typical development and autism

Molly B. D. Prigge; Erin D. Bigler; P. Thomas Fletcher; Brandon A. Zielinski; Caitlin Ravichandran; Jeffrey L. Anderson; Alyson L. Froehlich; Tracy J. Abildskov; Evangelia Papadopolous; Kathryn Maasberg; Jared A. Nielsen; Andrew L. Alexander; Nicholas Lange; Janet E. Lainhart

Heightened auditory sensitivity and atypical auditory processing are common in autism. Functional studies suggest abnormal neural response and hemispheric activation to auditory stimuli, yet the neurodevelopment underlying atypical auditory function in autism is unknown. In this study, we model longitudinal volumetric growth of Heschls gyrus gray matter and white matter during childhood and adolescence in 40 individuals with autism and 17 typically developing participants. Up to three time points of magnetic resonance imaging data, collected on average every 2.5 years, were examined from individuals 3–12 years of age at the time of their first scan. Consistent with previous cross‐sectional studies, no group differences were found in Heschls gyrus gray matter volume or asymmetry. However, reduced longitudinal gray matter volumetric growth was found in the right Heschls gyrus in autism. Reduced longitudinal white matter growth in the left hemisphere was found in the right‐handed autism participants. Atypical Heschls gyrus white matter volumetric growth was found bilaterally in the autism individuals with a history of delayed onset of spoken language. Heightened auditory sensitivity, obtained from the Sensory Profile, was associated with reduced volumetric gray matter growth in the right hemisphere. Our longitudinal analyses revealed dynamic gray and white matter changes in Heschls gyrus throughout childhood and adolescence in both typical development and autism. Autism Res 2013, 6: 78–90.


Systems Research and Behavioral Science | 2013

Fusiform Correlates of Facial Memory in Autism

Haley G. Trontel; Tyler C. Duffield; Erin D. Bigler; Alyson L. Froehlich; Molly B. D. Prigge; Jared A. Nielsen; Jason R. Cooperrider; Annahir N. Cariello; Brittany G. Travers; Jeffrey S. Anderson; Brandon A. Zielinski; Andrew L. Alexander; Nicholas Lange; Janet E. Lainhart

Prior studies have shown that performance on standardized measures of memory in children with autism spectrum disorder (ASD) is substantially reduced in comparison to matched typically developing controls (TDC). Given reported deficits in face processing in autism, the current study compared performance on an immediate and delayed facial memory task for individuals with ASD and TDC. In addition, we examined volumetric differences in classic facial memory regions of interest (ROI) between the two groups, including the fusiform, amygdala, and hippocampus. We then explored the relationship between ROI volume and facial memory performance. We found larger volumes in the autism group in the left amygdala and left hippocampus compared to TDC. In contrast, TDC had larger left fusiform gyrus volumes when compared with ASD. Interestingly, we also found significant negative correlations between delayed facial memory performance and volume of the left and right fusiform and the left hippocampus for the ASD group but not for TDC. The possibility of larger fusiform volume as a marker of abnormal connectivity and decreased facial memory is discussed.


Journal of Clinical and Experimental Neuropsychology | 2015

Mesial temporal lobe and memory function in autism spectrum disorder: An exploration of volumetric findings

Haley G. Trontel; Tyler C. Duffield; Erin D. Bigler; Tracy J. Abildskov; Alyson L. Froehlich; Molly B. D. Prigge; Brittany G. Travers; Jeffrey S. Anderson; Brandon A. Zielinski; Andrew L. Alexander; Nicholas Lange; Janet E. Lainhart

Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typical developing individuals on standardized measures of memory, even when not significantly different on measures of IQ. The current study sought to examine within ASD whether anatomical correlates of memory performance differed between those with average-to-above-average IQ (AIQ group) and those with low-average to borderline ability (LIQ group) as well as in relations to typically developing comparisons (TDC). Using automated volumetric analyses, we examined regional volume of classic memory areas including the hippocampus, parahippocampal gyrus, entorhinal cortex, and amygdala in an all-male sample AIQ (n = 38) and LIQ (n = 18) individuals with ASD along with 30 typically developing comparisons (TDC). Memory performance was assessed using the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences on almost all facets of memory and learning as assessed by the various subtests of the TOMAL. The three groups did not differ on any region of interest (ROI) memory-related brain volumes. However, significant size–memory function interactions were observed. Negative correlations were found between the volume of the amygdala and composite, verbal, and delayed memory indices for the LIQ ASD group, indicating larger volume related to poorer performance. Implications for general memory functioning and dysfunctional neural connectivity in ASD are discussed.


Research in Autism Spectrum Disorders | 2017

Relationship between brain stem volume and aggression in children diagnosed with autism spectrum disorder

Rebecca A. Lundwall; Kevin G. Stephenson; E. Shannon Neeley-Tass; Jonathan C. Cox; Mikle South; Erin D. Bigler; Emily Anderberg; Molly B. D. Prigge; Blake D. Hansen; Janet E. Lainhart; Ryan O. Kellems; Jo Ann Petrie; Terisa P. Gabrielsen

BACKGROUND Aggressive behaviors are common in individuals diagnosed with autism spectrum disorder (ASD) and may be phenotypic indicators of different subtypes within ASD. In current research literature for non-ASD samples, aggression has been linked to several brain structures associated with emotion and behavioral control. However, few if any studies exist investigating brain volume differences in individuals with ASD who have comorbid aggression as indicated by standardized diagnostic and behavioral measures. METHOD We examined neuroimaging data from individuals rigorously diagnosed with ASD versus typically developing (TD) controls. We began with data from brain volume regions of interest (ROI) taken from previous literature on aggression including the brainstem, amygdala, orbitofrontal cortex, anterior cingulate cortex, and dorsolateral prefrontal cortex. We defined aggression status using the Irritability subscale of the Aberrant Behavior Checklist and used lasso logistic regression to select among these predictor variables. Brainstem volume was the only variable shown to be a predictor of aggression status. RESULTS We found that smaller brainstem volumes are associated with higher odds of being in the high aggression group. CONCLUSIONS Understanding brain differences in individuals with ASD who engage in aggressive behavior from those with ASD who do not can inform treatment approaches. Future research should investigate brainstem structure and function in ASD to identify possible mechanisms related to arousal and aggression.


Child Neuropsychology | 2016

Beery VMI performance in autism spectrum disorder

Ryan R. Green; Erin D. Bigler; Alyson L. Froehlich; Molly B. D. Prigge; Brittany G. Travers; Annahir N. Cariello; Jeffrey S. Anderson; Brandon A. Zielinski; Andrew L. Alexander; Nicholas Lange; Janet E. Lainhart

Few studies have examined the visuomotor integration (VMI) abilities of individuals with autism spectrum disorder (ASD). An all-male sample consisting of 56 ASD participants (ages 3–23 years) and 36 typically developing (TD) participants (ages 4–26 years) completed the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) as part of a larger neuropsychological battery. Participants were also administered standardized measures of intellectual functioning and the Social Responsiveness Scale (SRS), which assesses autism and autism-like traits. The ASD group performed significantly lower on the Beery VMI and on all IQ measures compared to the TD group. VMI performance was significantly correlated with full scale IQ (FSIQ), performance IQ (PIQ), and verbal IQ (VIQ) in the TD group only. However, when FSIQ was taken into account, no significant Beery VMI differences between groups were observed. Only one TD participant scored 1.5 standard deviations (SDs) below the Beery VMI normative sample mean, in comparison to 21% of the ASD sample. As expected, the ASD group was rated as having significantly higher levels of social impairment on the SRS compared to the TD group across all major domains. However, level of functioning on the SRS was not associated with Berry VMI performance. These findings demonstrate that a substantial number of individuals with ASD experience difficulties compared to TD in performing VMI-related tasks, and that VMI is likely affected by general cognitive ability. The fact that lowered Beery VMI performance occurred only within a subset of individuals with ASD and did not correlate with SRS would indicate that visuomotor deficits are not a core feature of ASD, even though they present at a higher rate of impairment than observed in TD participants.


Psychological Reports | 2015

WIDE RANGE ACHIEVEMENT TEST IN AUTISM SPECTRUM DISORDER: TEST-RETEST STABILITY, ,

Paul B. Jantz; Alyson L. Froehlich; Annahir N. Cariello; Jeffrey L. Anderson; Andrew L. Alexander; Erin D. Bigler; Molly B. D. Prigge; Brittany G. Travers; Brandon A. Zielinski; Nicholas Lange; Janet E. Lainhart

The principal goal of this descriptive study was to establish the test-retest stability of the Reading, Spelling, and Arithmetic subtest scores of the Wide Range Achievement Test (WRAT-3) across two administrations in individuals with autism spectrum disorder. Participants (N = 31) were males ages 6–22 years (M = 15.2, SD = 4.0) who were part of a larger ongoing longitudinal study of brain development in children and adults with autism spectrum disorder (N = 185). Test-retest stability for all three subtests remained consistent across administration periods (M = 31.8mo., SD = 4.1). Age at time of administration, time between administrations, and test form did not significantly influence test-retest stability. Results indicated that for research involving individuals with autism spectrum disorder with a full scale intelligence quotient above 75, the WRAT-3 Spelling and Arithmetic subtests have acceptable test-retest stability over time and the Reading subtest has moderate test-retest stability over time.

Collaboration


Dive into the Molly B. D. Prigge's collaboration.

Top Co-Authors

Avatar

Janet E. Lainhart

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Erin D. Bigler

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew L. Alexander

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brittany G. Travers

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge