Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Delgado is active.

Publication


Featured researches published by Monica Delgado.


The EMBO Journal | 2008

Toll-like receptors control autophagy.

Monica Delgado; Rasha A Elmaoued; Alexander S. Davis; George B. Kyei; Vojo Deretic

Autophagy is a newly recognized innate defense mechanism, acting as a cell‐autonomous system for elimination of intracellular pathogens. The signals and signalling pathways inducing autophagy in response to pathogen invasion are presently not known. Here we show that autophagy is controlled by recognizing conserved pathogen‐associated molecular patterns (PAMPs). We screened a PAMP library for effects on autophagy in RAW 264.7 macrophages and found that several prototype Toll‐like receptor (TLR) ligands induced autophagy. Single‐stranded RNA and TLR7 generated the most potent effects. Induction of autophagy via TLR7 depended on MyD88 expression. Stimulation of autophagy with TLR7 ligands was functional in eliminating intracellular microbes, even when the target pathogen was normally not associated with TLR7 signalling. These findings link two innate immunity defense systems, TLR signalling and autophagy, provide a potential molecular mechanism for induction of autophagy in response to pathogen invasion, and show that the newly recognized ability of TLR ligands to stimulate autophagy can be used to treat intracellular pathogens.


The EMBO Journal | 2009

Control of autophagy initiation by phosphoinositide 3‐phosphatase jumpy

Isabelle Vergne; Esteban Roberts; Rasha A Elmaoued; Valérie Tosch; Monica Delgado; Tassula Proikas-Cezanne; Jocelyn Laporte; Vojo Deretic

The majority of studies on autophagy, a cytoplasmic homeostatis pathway of broad biological and medical significance, have been hitherto focused on the phosphatidylinositol 3‐kinases as the regulators of autophagy. Here, we addressed the reverse process driven by phosphoinositide phosphatases and uncovered a key negative regulatory role in autophagy of a phosphatidylinositol 3‐phosphate (PI3P) phosphatase Jumpy (MTMR14). Jumpy associated with autophagic isolation membranes and early autophagosomes, defined by the key factor Atg16 necessary for proper localization and development of autophagic organelles. Jumpy orchestrated orderly succession of Atg factors by controlling recruitment to autophagic membranes of the sole mammalian Atg factor that interacts with PI3P, WIPI‐1 (Atg18), and by affecting the distribution of Atg9 and LC3, the two Atg factors controlling organization and growth of autophagic membranes. A catalytically inactive Jumpy mutant, R336Q, found in congenital disease centronuclear myopathy, lost the ability to negatively regulate autophagy. This work reports for the first time that initiation of autophagy is controlled not only by the forward reaction of generating PI3P through a lipid kinase but that its levels are controlled by a specific PI3P phosphatase, which when defective can lead to human disease.


Immunity | 2010

Delivery of Cytosolic Components by Autophagic Adaptor Protein p62 Endows Autophagosomes with Unique Antimicrobial Properties

Marisa Ponpuak; Alexander S. Davis; Esteban Roberts; Monica Delgado; Christina Dinkins; Zijiang Zhao; Herbert W. Virgin; George B. Kyei; Terje Johansen; Isabelle Vergne; Vojo Deretic

Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles.


Nature Cell Biology | 2010

Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria

Sudha B. Singh; Wojciech Ornatowski; Isabelle Vergne; John Naylor; Monica Delgado; Esteban Roberts; Marisa Ponpuak; Sharon Master; Manohar Pilli; Eileen White; Masaaki Komatsu; Vojo Deretic

IRGM, a human immunity-related GTPase, confers autophagic defence against intracellular pathogens by an unknown mechanism. Here, we report an unexpected mode of IRGM action. IRGM demonstrated differential affinity for the mitochondrial lipid cardiolipin, translocated to mitochondria, affected mitochondrial fission and induced autophagy. Mitochondrial fission was necessary for autophagic control of intracellular mycobacteria by IRGM. IRGM influenced mitochondrial membrane polarization and cell death. Overexpression of IRGMd, but not IRGMb splice isoforms, caused mitochondrial depolarization and autophagy-independent, but Bax/Bak-dependent, cell death. By acting on mitochondria, IRGM confers autophagic protection or cell death, explaining IRGM action both in defence against tuberculosis and in the damaging inflammation caused by Crohns disease.


Immunological Reviews | 2009

Autophagy and pattern recognition receptors in innate immunity.

Monica Delgado; Sudha B. Singh; Sergio de Haro; Sharon Master; Marisa Ponpuak; Christina Dinkins; Wojchiech Ornatowski; Isabelle Vergne; Vojo Deretic

Summary:  Autophagy is a physiologically and immunologically controlled intracellular homeostatic pathway that sequesters and degrades cytoplasmic targets including macromolecular aggregates, cellular organelles such as mitochondria, and whole microbes or their products. Recent advances show that autophagy plays a role in innate immunity in several ways: (i) direct elimination of intracellular microbes by digestion in autolysosomes, (ii) delivery of cytosolic microbial products to pattern recognition receptors (PRRs) in a process referred to as topological inversion, and (iii) as an anti‐microbial effector of Toll‐like receptors and other PRR signaling. Autophagy eliminates pathogens in vitro and in vivo but, when aberrant due to mutations, contributes to human inflammatory disorders such as Crohn’s disease. In this review, we examine these relationships and propose that autophagy is one of the most ancient innate immune defenses that has possibly evolved at the time of α‐protobacteria–pre‐eukaryote relationships, leading up to modern eukaryotic cell–mitochondrial symbiosis, and that during the metazoan evolution, additional layers of immunological regulation have been superimposed and integrated with this primordial innate immunity mechanism.


Current Topics in Microbiology and Immunology | 2009

Autophagy in Immunity Against Mycobacterium tuberculosis: a Model System to Dissect Immunological Roles of Autophagy

Vojo Deretic; Monica Delgado; Isabelle Vergne; Sharon Master; Sergio de Haro; Marisa Ponpuak; Sudha B. Singh

The recognition of autophagy as an immune mechanism has been affirmed in recent years. One of the model systems that has helped in the development of our current understanding of how autophagy and more traditional immunity systems cooperate in defense against intracellular pathogens is macrophage infection with Mycobacterium tuberculosis. M. tuberculosis is a highly significant human pathogen that latently infects billions of people and causes active disease in millions of patients worldwide. The ability of the tubercle bacillus to persist in human populations rests upon its macrophage parasitism. One of the initial reports on the ability of autophagy to act as a cell-autonomous innate immunity mechanism capable of eliminating intracellular bacteria was on M. tuberculosis. This model system has further contributed to the recognition of multiple connections between conventional immune regulators and autophagy. In this chapter, we will review how these studies have helped to establish the following principles: (1) autophagy functions as an innate defense mechanism against intracellular microbes; (2) autophagy is under the control of pattern recognition receptors (PRR) such as Toll-like receptors (TLR), and it acts as one of the immunological output effectors of PRR and TLR signaling; (3) autophagy is one of the effector functions associated with the immunity-regulated GTPases, which were initially characterized as molecules involved in cell-autonomous defense, but whose mechanism of function was unknown until recently; (4) autophagy is an immune effector of Th1/Th2 T cell response polarization-autophagy is activated by Th1 cytokines (which act in defense against intracellular pathogens) and is inhibited by Th2 cytokines (which make cells accessible to intracellular pathogens). Collectively, the studies employing the M. tuberculosis autophagy model system have contributed to the development of a more comprehensive view of autophagy as an immunological process. This work and related studies by others have led us to propose a model of how autophagy, an ancient innate immunity defense, became integrated over the course of evolution with other immune mechanisms of ever-increasing complexity.


Cell Death & Differentiation | 2009

Toll-like receptors in control of immunological autophagy

Monica Delgado; Vojo Deretic

Autophagy is a cell biological process, enabling cells to autodigest their own cytosol when starved, remove cytoplasmic protein aggregates too large for proteasomal degradation, eliminate aberrant or over-proliferated organelles, and sanitize the cytoplasm by killing intracellular microbes. The role of autophagy has been expanded in recent years to include diverse immunological effector and regulatory functions. In this review, we summarize the multiple immunological roles of autophagy uncovered to date and focus primarily on details of induction of autophagy by pattern recognition receptors, as a newly established Toll-like receptor output. Taken together with other links between autophagy and innate and adaptive immunity processes, this cell-autonomous antimicrobial defense may be evolutionarily positioned at the root of immunity with the multiple innate and adaptive immunity connections uncovered to date reflecting a co-evolution of this ancient cell-defense mechanism and more advanced immunological systems in metazoans.


Autophagy | 2006

Autophagy in Immune Defense Against Mycobacterium tuberculosis

Isabelle Vergne; Sudha B. Singh; Esteban Roberts; George B. Kyei; Sharon Master; James Harris; Sergio de Haro; John Naylor; Alexander S. Davis; Monica Delgado; Vojo Deretic

Autophagy is a newly recognized innate and adaptive immunity defense against intracellular pathogens, in keeping with its role as a cytoplasmic maintenance pathway. Induction of autophagy by physiological, pharmacological or immunological means can eliminate intracellular Mycobacterium tuberculosis, providing one of the first examples of the immunological role of autophagy. Under normal circumstances, M. tuberculosis survives in macrophages by inhibiting phagolysosome biogenesis. Induction of autophagy overcomes the mycobacterial phagosome maturation block, and delivers the tubercle bacilli to degradative, compartments, where they are eliminated.


Veterinary Immunology and Immunopathology | 2009

Th1-Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages.

James Harris; Sharon Master; Sergio de Haro; Monica Delgado; Esteban Roberts; Jayne Hope; Joseph Keane; Vojo Deretic

Autophagy is a major intracellular pathway for the lysosomal degradation of long-lived cytoplasmic macromolecules and damaged or surplus organelles. More recently, autophagy has also been linked with innate and adaptive immune responses against intracellular pathogens, including Mycobacterium tuberculosis, which can survive within macrophages by blocking fusion of the phagosome with lysosomes. Induction of autophagy by the Th1 cytokine IFN-gamma enables infected macrophages to overcome this phagosome maturation block and inhibit the intracellular survival of mycobacteria. Conversely, the Th2 cytokines IL-4 and IL-13 inhibit autophagy in murine and human macrophages. We discuss how differential modulation of autophagy by Th1 and Th2 cytokines may represent an important feature of the host response to mycobacteria.


Infection and Immunity | 2006

Nonclassical Pathway of Pseudomonas aeruginosa DNA-Induced Interleukin-8 Secretion in Cystic Fibrosis Airway Epithelial Cells

Monica Delgado; Jens F. Poschet; Vojo Deretic

ABSTRACT Pseudomonas aeruginosa is a critical colonizer of the respiratory tract in cystic fibrosis. The chronic infections with this microorganism contribute to excessive inflammation and progressive lung damage in cystic fibrosis patients. The full repertoire of Pseudomonas products that promote inflammation in the cystic fibrosis lung is not known. Here we show that P. aeruginosa DNA released from the bacterium, but not human DNA from epithelial cells or Escherichia coli DNA, displays proinflammatory properties and induces human respiratory epithelial cells to secrete interleukin-8 (IL-8), a key chemokine causing excessive neutrophil infiltration in the cystic fibrosis lung. IL-8 secretion was not due to an increase in NF-κB- or activator protein-1-dependent IL-8 promoter transcription, but instead depended on p38 and Erk mitogen-activated protein kinases. No secretion of IL-8 was observed using conventional Toll-like receptor 9 ligands (CpG oligonucleotides), although it could be demonstrated that parts of the Toll-like receptor 9-signaling pathway were functional, since class B and C CpG oligonucleotide ligands stimulated production of RANTES chemokine. The IL-8 secretion in response to P. aeruginosa DNA was decreased by treatments that inhibit acidification of intracellular organelles, using chloroquine, a pH-neutralizing compound, or bafilomycin A1, an inhibitor of vacuolar H+-ATPase. These data indicate that DNA released from P. aeruginosa during chronic infections may significantly contribute to the proinflammatory processes in cystic fibrosis. Our findings also show that treatments with drugs diminishing organellar acidification may reduce the inflammatory response in cystic fibrosis.

Collaboration


Dive into the Monica Delgado's collaboration.

Top Co-Authors

Avatar

Vojo Deretic

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon Master

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Sergio de Haro

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sudha B. Singh

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George B. Kyei

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge