Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sudha B. Singh is active.

Publication


Featured researches published by Sudha B. Singh.


Cell | 2004

Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages.

Maximiliano G. Gutierrez; Sharon Master; Sudha B. Singh; Gregory A. Taylor; María I. Colombo; Vojo Deretic

Mycobacterium tuberculosis is an intracellular pathogen persisting within phagosomes through interference with phagolysosome biogenesis. Here we show that stimulation of autophagic pathways in macrophages causes mycobacterial phagosomes to mature into phagolysosomes. Physiological induction of autophagy or its pharmacological stimulation by rapamycin resulted in mycobacterial phagosome colocalization with the autophagy effector LC3, an elongation factor in autophagosome formation. Autophagy stimulation increased phagosomal colocalization with Beclin-1, a subunit of the phosphatidylinositol 3-kinase hVPS34, necessary for autophagy and a target for mycobacterial phagosome maturation arrest. Induction of autophagy suppressed intracellular survival of mycobacteria. IFN-gamma induced autophagy in macrophages, and so did transfection with LRG-47, an effector of IFN-gamma required for antimycobacterial action. These findings demonstrate that autophagic pathways can overcome the trafficking block imposed by M. tuberculosis. Autophagy, which is a hormonally, developmentally, and, as shown here, immunologically regulated process, represents an underappreciated innate defense mechanism for control of intracellular pathogens.


Science | 2006

Human IRGM Induces Autophagy to Eliminate Intracellular Mycobacteria

Sudha B. Singh; Alexander S. Davis; Gregory A. Taylor; Vojo Deretic

Immunity-related p47 guanosine triphosphatases (IRG) play a role in defense against intracellular pathogens. We found that the murine Irgm1 (LRG-47) guanosine triphosphatase induced autophagy and generated large autolysosomal organelles as a mechanism for the elimination of intracellular Mycobacterium tuberculosis. We also identified a function for a human IRG protein in the control of intracellular pathogens and report that the human Irgm1 ortholog, IRGM, plays a role in autophagy and in the reduction of intracellular bacillary load.


Journal of Experimental Medicine | 2009

Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages

George B. Kyei; Christina Dinkins; Alexander S. Davis; Esteban Roberts; Sudha B. Singh; Chunsheng Dong; Li Wu; Eiki Kominami; Takashi Ueno; Akitsugu Yamamoto; Maurizio Federico; Antonito Panganiban; Isabelle Vergne; Vojo Deretic

1. 1. Kyei, 2. et al . 2009. J. Cell Biol. doi:[10.1083/jcb.200903070][1] [1]: /lookup/doi/10.1083/jcb.200903070


Cellular Microbiology | 2006

Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism

Vojo Deretic; Sudha B. Singh; Sharon Master; James Harris; Esteban Roberts; George B. Kyei; Alexander S. Davis; Sergio de Haro; John Naylor; Huang Ho Lee; Isabelle Vergne

A marquee feature of the powerful human pathogen Mycobacterium tuberculosis is its macrophage parasitism. The intracellular survival of this microorganism rests upon its ability to arrest phagolysosome biogenesis, avoid direct cidal mechanisms in macrophages, and block efficient antigen processing and presentation. Mycobacteria prevent Rab conversion on their phagosomes and elaborate glycolypid and protein trafficking toxins that interfere with Rab effectors and regulation of specific organellar biogenesis in mammalian cells. One of the major Rab effectors affected in this process is the type III phosphatidylinositol 3‐kinase hVPS34 and its enzymatic product phosphatidylinositol 3‐phosphate (PI3P), a regulatory lipid earmarking organellar membranes for specific trafficking events. PI3P is also critical for the process of autophagy, recently recognized as an effector of innate and adaptive immunity. Induction of autophagy by physiological, pharmacological or immunological signals, including the major antituberculosis Th1 cytokine IFN‐γ and its downstream effector p47 GTPase LRG‐47, can overcome mycobacterial phagosome maturation block and inhibit intracellular M. tuberculosis survival. This review summarizes the findings centred around the PI3P‐nexus where the mycobacterial phagosome maturation block and execution stages of autophagy intersect.


Nature Cell Biology | 2010

Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria

Sudha B. Singh; Wojciech Ornatowski; Isabelle Vergne; John Naylor; Monica Delgado; Esteban Roberts; Marisa Ponpuak; Sharon Master; Manohar Pilli; Eileen White; Masaaki Komatsu; Vojo Deretic

IRGM, a human immunity-related GTPase, confers autophagic defence against intracellular pathogens by an unknown mechanism. Here, we report an unexpected mode of IRGM action. IRGM demonstrated differential affinity for the mitochondrial lipid cardiolipin, translocated to mitochondria, affected mitochondrial fission and induced autophagy. Mitochondrial fission was necessary for autophagic control of intracellular mycobacteria by IRGM. IRGM influenced mitochondrial membrane polarization and cell death. Overexpression of IRGMd, but not IRGMb splice isoforms, caused mitochondrial depolarization and autophagy-independent, but Bax/Bak-dependent, cell death. By acting on mitochondria, IRGM confers autophagic protection or cell death, explaining IRGM action both in defence against tuberculosis and in the damaging inflammation caused by Crohns disease.


Immunological Reviews | 2009

Autophagy and pattern recognition receptors in innate immunity.

Monica Delgado; Sudha B. Singh; Sergio de Haro; Sharon Master; Marisa Ponpuak; Christina Dinkins; Wojchiech Ornatowski; Isabelle Vergne; Vojo Deretic

Summary:  Autophagy is a physiologically and immunologically controlled intracellular homeostatic pathway that sequesters and degrades cytoplasmic targets including macromolecular aggregates, cellular organelles such as mitochondria, and whole microbes or their products. Recent advances show that autophagy plays a role in innate immunity in several ways: (i) direct elimination of intracellular microbes by digestion in autolysosomes, (ii) delivery of cytosolic microbial products to pattern recognition receptors (PRRs) in a process referred to as topological inversion, and (iii) as an anti‐microbial effector of Toll‐like receptors and other PRR signaling. Autophagy eliminates pathogens in vitro and in vivo but, when aberrant due to mutations, contributes to human inflammatory disorders such as Crohn’s disease. In this review, we examine these relationships and propose that autophagy is one of the most ancient innate immune defenses that has possibly evolved at the time of α‐protobacteria–pre‐eukaryote relationships, leading up to modern eukaryotic cell–mitochondrial symbiosis, and that during the metazoan evolution, additional layers of immunological regulation have been superimposed and integrated with this primordial innate immunity mechanism.


Current Topics in Microbiology and Immunology | 2009

Autophagy in Immunity Against Mycobacterium tuberculosis: a Model System to Dissect Immunological Roles of Autophagy

Vojo Deretic; Monica Delgado; Isabelle Vergne; Sharon Master; Sergio de Haro; Marisa Ponpuak; Sudha B. Singh

The recognition of autophagy as an immune mechanism has been affirmed in recent years. One of the model systems that has helped in the development of our current understanding of how autophagy and more traditional immunity systems cooperate in defense against intracellular pathogens is macrophage infection with Mycobacterium tuberculosis. M. tuberculosis is a highly significant human pathogen that latently infects billions of people and causes active disease in millions of patients worldwide. The ability of the tubercle bacillus to persist in human populations rests upon its macrophage parasitism. One of the initial reports on the ability of autophagy to act as a cell-autonomous innate immunity mechanism capable of eliminating intracellular bacteria was on M. tuberculosis. This model system has further contributed to the recognition of multiple connections between conventional immune regulators and autophagy. In this chapter, we will review how these studies have helped to establish the following principles: (1) autophagy functions as an innate defense mechanism against intracellular microbes; (2) autophagy is under the control of pattern recognition receptors (PRR) such as Toll-like receptors (TLR), and it acts as one of the immunological output effectors of PRR and TLR signaling; (3) autophagy is one of the effector functions associated with the immunity-regulated GTPases, which were initially characterized as molecules involved in cell-autonomous defense, but whose mechanism of function was unknown until recently; (4) autophagy is an immune effector of Th1/Th2 T cell response polarization-autophagy is activated by Th1 cytokines (which act in defense against intracellular pathogens) and is inhibited by Th2 cytokines (which make cells accessible to intracellular pathogens). Collectively, the studies employing the M. tuberculosis autophagy model system have contributed to the development of a more comprehensive view of autophagy as an immunological process. This work and related studies by others have led us to propose a model of how autophagy, an ancient innate immunity defense, became integrated over the course of evolution with other immune mechanisms of ever-increasing complexity.


Autophagy | 2006

Autophagy in Immune Defense Against Mycobacterium tuberculosis

Isabelle Vergne; Sudha B. Singh; Esteban Roberts; George B. Kyei; Sharon Master; James Harris; Sergio de Haro; John Naylor; Alexander S. Davis; Monica Delgado; Vojo Deretic

Autophagy is a newly recognized innate and adaptive immunity defense against intracellular pathogens, in keeping with its role as a cytoplasmic maintenance pathway. Induction of autophagy by physiological, pharmacological or immunological means can eliminate intracellular Mycobacterium tuberculosis, providing one of the first examples of the immunological role of autophagy. Under normal circumstances, M. tuberculosis survives in macrophages by inhibiting phagolysosome biogenesis. Induction of autophagy overcomes the mycobacterial phagosome maturation block, and delivers the tubercle bacilli to degradative, compartments, where they are eliminated.


Blood | 2013

PARP1 is required for chromosomal translocations

Justin Wray; Elizabeth A. Williamson; Sudha B. Singh; Yuehan Wu; Christopher R. Cogle; David M. Weinstock; Yu Zhang; Suk-Hee Lee; Daohong Zhou; Lijian Shao; Martin Hauer-Jensen; Rupak Pathak; Virginia M. Klimek; Jac A. Nickoloff; Robert Hromas

Chromosomal translocations are common contributors to malignancy, yet little is known about the precise molecular mechanisms by which they are generated. Sequencing translocation junctions in acute leukemias revealed that the translocations were likely mediated by a DNA double-strand break repair pathway termed nonhomologous end-joining (NHEJ). There are major 2 types of NHEJ: (1) the classical pathway initiated by the Ku complex, and (2) the alternative pathway initiated by poly ADP-ribose polymerase 1 (PARP1). Recent reports suggest that classical NHEJ repair components repress translocations, whereas alternative NHEJ components were required for translocations. The rate-limiting step for initiation of alternative NHEJ is the displacement of the Ku complex by PARP1. Therefore, we asked whether PARP1 inhibition could prevent chromosomal translocations in 3 translocation reporter systems. We found that 2 PARP1 inhibitors or repression of PARP1 protein expression strongly repressed chromosomal translocations, implying that PARP1 is essential for this process. Finally, PARP1 inhibition also reduced both ionizing radiation-generated and VP16-generated translocations in 2 cell lines. These data define PARP1 as a critical mediator of chromosomal translocations and raise the possibility that oncogenic translocations occurring after high-dose chemotherapy or radiation could be prevented by treatment with a clinically available PARP1 inhibitor.


Cellular Microbiology | 2004

Endosomal membrane traffic: convergence point targeted by Mycobacterium tuberculosis and HIV

Vojo Deretic; Isabelle Vergne; Jennifer Chua; Sharon Master; Sudha B. Singh; Joseph Fazio; George B. Kyei

Inhibition of phagolysosome biogenesis in infected macrophages is a classical pathogenesis determinant of Mycobacterium tuberculosis. In this review we primarily cover the cellular mechanisms of M. tuberculosis phagosome maturation arrest. A detailed picture is beginning to emerge, involving regulators of membrane trafficking in mammalian cells and phagosomal interactions with endosomal organelles and the trans‐Golgi network. We also present a hypothesis that overlaps may exist between the mycobacterial interference with the host cell membrane trafficking processes and the targeting of the late endosomal sorting machinery by HIV during viral budding in macrophages. We propose that interference with the endosomal sorting machinery contributes to the synergism between the two significant human diseases – AIDS and tuberculosis.

Collaboration


Dive into the Sudha B. Singh's collaboration.

Top Co-Authors

Avatar

Vojo Deretic

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Henry C. Lin

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathaniel Ritz

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Sharon Master

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George B. Kyei

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Monica Delgado

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge