Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Einstein is active.

Publication


Featured researches published by Monica Einstein.


Diabetes | 2008

Selective Small-Molecule Agonists of G Protein–Coupled Receptor 40 Promote Glucose-Dependent Insulin Secretion and Reduce Blood Glucose in Mice

Carina P. Tan; Yue Feng; Yun-Ping Zhou; George J. Eiermann; Aleksandr Petrov; Changyou Zhou; Songnian Lin; Gino Salituro; Peter T. Meinke; Ralph T. Mosley; Taro E. Akiyama; Monica Einstein; Sanjeev Kumar; Joel P. Berger; Sander G. Mills; Nancy A. Thornberry; Lihu Yang; Andrew D. Howard

OBJECTIVE— Acute activation of G protein–coupled receptor 40 (GPR40) by free fatty acids (FFAs) or synthetic GPR40 agonists enhances insulin secretion. However, it is still a matter of debate whether activation of GPR40 would be beneficial for the treatment of type 2 diabetes, since chronic exposure to FFAs impairs islet function. We sought to evaluate the specific role of GPR40 in islets and its potential as a therapeutic target using compounds that specifically activate GPR40. RESEARCH DESIGN AND METHODS— We developed a series of GPR40-selective small-molecule agonists and studied their acute and chronic effects on glucose-dependent insulin secretion (GDIS) in isolated islets, as well as effects on blood glucose levels during intraperitoneal glucose tolerance tests in wild-type and GPR40 knockout mice (GPR40−/−). RESULTS— Small-molecule GPR40 agonists significantly enhanced GDIS in isolated islets and improved glucose tolerance in wild-type mice but not in GPR40−/− mice. While a 72-h exposure to FFAs in tissue culture significantly impaired GDIS in islets from both wild-type and GPR40−/− mice, similar exposure to the GPR40 agonist did not impair GDIS in islets from wild-type mice. Furthermore, the GPR40 agonist enhanced insulin secretion in perfused pancreata from neonatal streptozotocin-induced diabetic rats and improved glucose levels in mice with high-fat diet–induced obesity acutely and chronically. CONCLUSIONS— GPR40 does not mediate the chronic toxic effects of FFAs on islet function. Pharmacological activation of GPR40 may potentiate GDIS in humans and be beneficial for overall glucose control in patients with type 2 diabetes.


Molecular Pharmacology | 2007

The differential interactions of peroxisome proliferator-activated receptor gamma ligands with Tyr473 is a physical basis for their unique biological activities.

Monica Einstein; Taro E. Akiyama; Gino Castriota; Chuanlin F. Wang; Brian M. McKeever; Ralph T. Mosley; Joseph W. Becker; David E. Moller; Peter T. Meinke; Harold B. Wood; Joel P. Berger

Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR)γ agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPARγ modulators (SPPARγMs) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPARγMs interact with PPARγ differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPARγ ligand, SPPARγM2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signature in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPARγM2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPARγM2 was found to bind to and activate human PPARγ in which the Tyr473 residue had been mutated to alanine (hPPARγY473A), with potencies similar to those observed with the wild-type receptor (hPPARγWT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPARγMs were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPARγ full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPARγMs with the PPARγ LBD, thereby providing a precise molecular determinant for their differing pharmacologies.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of 5-aryloxy-2,4-thiazolidinediones as potent GPR40 agonists.

Changyou Zhou; Cheng Tang; Eric Chang; Min Ge; Songnian Lin; Eric Cline; Carina P. Tan; Yue Feng; Yun-Ping Zhou; George J. Eiermann; Aleksandr Petrov; Gino Salituro; Peter T. Meinke; Ralph T. Mosley; Taro E. Akiyama; Monica Einstein; Sanjeev Kumar; Joel P. Berger; Andrew D. Howard; Nancy A. Thornberry; Sander G. Mills; Lihu Yang

Systematic structure-activity relationship (SAR) studies of a screening lead led to the discovery of a series of thiazolidinediones (TZDs) as potent GPR40 agonists. Among them, compound C demonstrated an acute mechanism-based glucose-lowering in an intraperitoneal glucose tolerance test (IPGTT) in lean mice, while no effects were observed in GPR40 knock-out mice.


Journal of Medicinal Chemistry | 2009

Discovery of (2R)-2-(3-{3-[(4-Methoxyphenyl)carbonyl]-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl}phenoxy)butanoic Acid (MK-0533): A Novel Selective Peroxisome Proliferator-Activated Receptor γ Modulator for the Treatment of Type 2 Diabetes Mellitus with a Reduced Potential to Increase Plasma and Extracellular Fluid Volume

John J. Acton; Taro E. Akiyama; Ching H. Chang; Lawrence F. Colwell; Sheryl D. Debenham; Thomas W. Doebber; Monica Einstein; Kun Liu; Margaret E. McCann; David E. Moller; Eric S. Muise; Yejun Tan; John R. Thompson; Kenny K. Wong; Margaret Wu; Libo Xu; Peter T. Meinke; Joel P. Berger; Harold B. Wood

Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are used to treat type 2 diabetes mellitus (T2DM). Widespread use of PPARgamma agonists has been prevented due to adverse effects including weight gain, edema, and increased risk of congestive heart failure. Selective PPARgamma modulators (SPPARgammaMs) have been identified that have antidiabetic efficacy and reduced toxicity in preclinical species. In comparison with PPARgamma full agonists, SPPARgammaM 6 (MK0533) displayed diminished maximal activity (partial agonism) in cell-based transcription activation assays and attenuated gene signatures in adipose tissue. Compound 6 exhibited comparable efficacy to rosiglitazone and pioglitazone in vivo. However, with regard to the induction of untoward events, 6 displayed no cardiac hypertrophy, attenuated increases in brown adipose tissue, minimal increases in plasma volume, and no increases in extracellular fluid volume in vivo. Further investigation of 6 is warranted to determine if the improvement in mechanism-based side effects observed in preclinical species will be recapitulated in humans.


Journal of Medicinal Chemistry | 2011

Benzimidazolones: A New Class of Selective Peroxisome Proliferator-Activated Receptor γ (PPARγ) Modulators

Weiguo Liu; Fiona WaiYu Lau; Kun Liu; Harold B. Wood; Gaochao Zhou; Yuli Chen; Ying Li; Taro E. Akiyama; Gino Castriota; Monica Einstein; Chualin Wang; Margaret E. McCann; Thomas W. Doebber; Margaret Wu; Ching H. Chang; Brian M. McKeever; Ralph T. Mosley; Joel P. Berger; Peter T. Meinke

A series of benzimidazolone carboxylic acids and oxazolidinediones were designed and synthesized in search of selective PPARγ modulators (SPPARγMs) as potential therapeutic agents for the treatment of type II diabetes mellitus (T2DM) with improved safety profiles relative to rosiglitazone and pioglitazone, the currently marketed PPARγ full agonist drugs. Structure-activity relationships of these potent and highly selective SPPARγMs were studied with a focus on their unique profiles as partial agonists or modulators. A variety of methods, such as X-ray crystallographic analysis, PPARγ transactivation coactivator profiling, gene expression profiling, and mutagenesis studies, were employed to reveal the differential interactions of these new analogues with PPARγ receptor in comparison to full agonists. In rodent models of T2DM, benzimidazolone analogues such as (5R)-5-(3-{[3-(5-methoxybenzisoxazol-3-yl)benzimidazol-1-yl]methyl}phenyl)-5-methyloxazolidinedione (51) demonstrated efficacy equivalent to that of rosiglitazone. Side effects, such as fluid retention and heart weight gain associated with PPARγ full agonists, were diminished with 51 in comparison to rosiglitazone based on studies in two independent animal models.


The Journal of Steroid Biochemistry and Molecular Biology | 2004

Selective glucocorticoid receptor nonsteroidal ligands completely antagonize the dexamethasone mediated induction of enzymes involved in gluconeogenesis and glutamine metabolism.

Monica Einstein; Mark L. Greenlee; Greg Rouen; Ayesha Sitlani; Joe Santoro; Chuanlin Wang; Shilpa Pandit; Paul Mazur; Isabella Smalera; Alehna P. M. Weaver; Ying Ying Zeng; Lan Ge; Theresa M. Kelly; Tony Paiva; Wayne M. Geissler; Ralph T. Mosley; Joanne M. Williamson; Amjad Ali; Jim Balkovec; Georgianna Harris

Glucocorticoids (GCs) are vital multi-faceted hormones with recognized effects on carbohydrate, protein and lipid metabolism. Previous studies with the steroid antagonist, RU486 have underscored the essential role of GCs in the regulation of these metabolic pathways. This article describes the discovery and characterization of novel GRalpha selective nonsteroidal antagonists (NSGCAs). NSGCAs 2 and 3 are spirocyclic dihydropyridine derivatives that selectively bind the GRalpha with IC(50s) of 2 and 1.5 nM, respectively. Importantly, these compounds are full antagonists of the induction by dexamethasone (Dex) of marker genes for glucose and glutamine metabolism; the tyrosine amino transferase (TAT) and glutamine synthetase (GS) enzymes, respectively. In contrast, GC-dependent transcriptional repression of the collagenase 1 (MMP-1) enzyme, an established GRalpha responsive proinflammatory gene; is poorly antagonized by these compounds. These NSGCAs might have useful applications as tools in metabolic research and drug discovery.


Journal of Medicinal Chemistry | 2009

Discovery of a Peroxisome Proliferator Activated Receptor γ (PPARγ) Modulator with Balanced PPARα Activity for the Treatment of Type 2 Diabetes and Dyslipidemia

Weiguo Liu; Kun Liu; Harold B. Wood; Margaret E. McCann; Thomas W. Doebber; Ching H. Chang; Taro E. Akiyama; Monica Einstein; Joel P. Berger; Peter T. Meinke

A series of 3-acylindole-1-benzylcarboxylic acids were designed and synthesized while searching for a PPARgamma modulator with additional moderate intrinsic PPARalpha agonistic activity. 2-[3-[[3-(4-Chlorobenzoyl)-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl]methyl]phenoxy]-(2R)-butanoic acid (12d) was identified as such an agent which demonstrated potent efficacy in lowering both glucose and lipids in multiple animal models with significantly attenuated side effects such as fluid retention and heart weight gain associated with PPARgamma full agonists. The moderate PPARalpha activity of 12d not only contributed to the agents ability to manage lipid profiles but also appears to have potentiated its PPARgamma efficacy in lowering glucose levels in preclinical diabetic animal models.


Bioorganic & Medicinal Chemistry Letters | 2008

Highly functionalized 7-azaindoles as selective PPARγ modulators

Sheryl D. Debenham; Audrey Chan; Fiona WaiYu Lau; Weiguo Liu; Harold B. Wood; Karen Lemme; Lawrence F. Colwell; Bahanu Habulihaz; Taro E. Akiyama; Monica Einstein; Thomas W. Doebber; Neelam Sharma; Chaunlin F. Wang; Margaret Wu; Joel P. Berger; Peter T. Meinke

A series of highly functionalized 3-aroyl and 3-phenoxy-2-methyl-7-azaindoles have been identified, which are potent selective PPARgamma modulators (SPPARgammaMs). Addition of substituents at the 6-position of the 7-azaindoles improves in vitro potency and pharmacokinetics. 7-Azaindoles have significantly improved off-target profiles compared to the parent indole series.


Bioorganic & Medicinal Chemistry | 2008

Discovery of betamethasone 17α-carbamates as dissociated glucocorticoid receptor modulators in the rat

Amjad Ali; James M. Balkovec; Mark L. Greenlee; Milton L. Hammond; Greg Rouen; Gayle E. Taylor; Monica Einstein; Lan Ge; Georgianna Harris; Terri M. Kelly; Paul Mazur; Shilpa Pandit; Joseph C. Santoro; Ayesha Sitlani; Chuanlin Wang; Joann Williamson; Michael J. Forrest; Ester Carballo-Jane; Silvi Luell; Karen Lowitz; Denise M. Visco

A series of betamethasone 17alpha-carbamates were designed, synthesized, and evaluated for their ability to dissociate the two main functions of the glucocorticoid receptor, that is, transactivation and transrepression, in rat cell lines. A number of alkyl substituted betamethasone 17alpha-carbamates were identified with excellent affinity for the glucocorticoid receptor (e.g., 7, GR IC(50) 5.1 nM) and indicated dissociated profiles in functional assays of transactivation (rat tyrosine aminotransferase, TAT, and rat glutamine synthetase, GS) and transrepression (human A549 cells, MMP-1 assay). Gratifyingly, the in-vivo profile of these compounds, for example, 7, also indicated potent anti-inflammatory activity with impaired effects on glucose, insulin, triglycerides, and body weight. Taken together, these results indicate that dissociated glucocorticoid receptor modulators can be identified in rodents.


PLOS ONE | 2012

A Genome-Wide siRNA Screen to Identify Modulators of Insulin Sensitivity and Gluconeogenesis

Ruojing Yang; Raul Lacson; Gino Castriota; Xiaohua Douglas Zhang; Yaping Liu; Wenqing Zhao; Monica Einstein; Luiz M. Camargo; Sajjad A. Qureshi; Kenny K. Wong; Bei B. Zhang; Marc Ferrer; Joel P. Berger

Background Hepatic insulin resistance impairs insulin’s ability to suppress hepatic glucose production (HGP) and contributes to the development of type 2 diabetes (T2D). Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. Methodology/Principal Findings To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC) promoter (AH-G6PC cells). Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4) mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD) of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. Conclusions/Significance These results support the proposition that the proteins encoded by the genes identified in our cell-based druggable genome siRNA screen hold the potential to serve as novel pharmacological targets for the treatment of T2D.

Collaboration


Dive into the Monica Einstein's collaboration.

Researchain Logo
Decentralizing Knowledge