Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Favnebøe Solberg is active.

Publication


Featured researches published by Monica Favnebøe Solberg.


PLOS ONE | 2013

Does Domestication Cause Changes in Growth Reaction Norms? A Study of Farmed, Wild and Hybrid Atlantic Salmon Families Exposed to Environmental Stress

Monica Favnebøe Solberg; Øystein Skaala; Frank Nilsen; Kevin A. Glover

One of the most important traits linked with the successful domestication of animals is reducing their sensitivity to environmental stressors in the human controlled environment. In order to examine whether domestication selection in Atlantic salmon Salmo salar L., over approximately ten generations, has inadvertently selected for reduced responsiveness to stress, we compared the growth reaction norms of 29 wild, hybrid and domesticated families reared together under standard hatchery conditions (control) and in the presence of a stressor (reduced water level twice daily). The experiment was conducted for a 14 week period. Farmed salmon outgrew wild salmon 1∶2.93 in the control tanks, and no overlap in mean weight was displayed between families representing the three groups. Thus, the elevation of the reaction norms differed among the groups. Overall, growth was approximately 25% lower in the stressed tanksl; however, farmed salmon outgrew wild salmon 1∶3.42 under these conditions. That farmed salmon maintained a relatively higher growth rate than the wild salmon in the stressed tanks demonstrates a lower responsiveness to stress in the farmed salmon. Thus, flatter reaction norm slopes were displayed in the farmed salmon, demonstrating reduced plasticity for this trait under these specific experimental conditions. For all growth measurements, hybrid salmon displayed intermediate values. Wild salmon displayed higher heritability estimates for body weight than the hybrid and farmed salmon in both environments. This suggests reduced genetic variation for body weight in the farmed contra wild salmon studied here. While these results may be linked to the specific families and stocks investigated, and verification in other stocks and traits is needed, these data are consistent with the theoretical predictions of domestication.


PLOS Genetics | 2015

The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon(Salmo salar L.) Males

Fernando Ayllon; Erik Kjærner-Semb; Tomasz Furmanek; Vidar Wennevik; Monica Favnebøe Solberg; Geir Dahle; Geir Lasse Taranger; Kevin A. Glover; Markus Sällman Almén; Carl Johan Rubin; Rolf B. Edvardsen; Anna Wargelius

Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1–5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33–36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.


BMC Evolutionary Biology | 2013

Growth reaction norms of domesticated, wild and hybrid Atlantic salmon families in response to differing social and physical environments

Monica Favnebøe Solberg; Zhiwei Zhang; Frank Nilsen; Kevin A. Glover

BackgroundDirectional selection for growth has resulted in the 9-10th generation of domesticated Atlantic salmon Salmo salar L. outgrowing wild salmon by a ratio of approximately 3:1 when reared under standard hatchery conditions. In the wild however, growth of domesticated and wild salmon is more similar, and seems to differ at the most by a ratio of 1.25:1. Comparative studies of quantitative traits in farmed and wild salmon are often performed by the use of common-garden experiments where salmon of all origins are reared together to avoid origin-specific environmental differences. As social interaction may influence growth, the large observed difference in growth between wild and domesticated salmon in the hatchery may not be entirely genetically based, but inflated by inter-strain competition. This study had two primary aims: (i) investigate the effect of social interaction and inter-strain competition in common-garden experiments, by comparing the relative growth of farmed, hybrid and wild salmon when reared together and separately; (ii) investigate the competitive balance between wild and farmed salmon by comparing their norm of reaction for survival and growth along an environmental gradient ranging from standard hatchery conditions to a semi-natural environment with restricted feed.ResultsThe main results of this study, which are based upon the analysis of more than 6000 juvenile salmon, can be summarised as; (i) there was no difference in relative growth between wild and farmed salmon when reared together and separately; (ii) the relative difference in body weight at termination between wild and farmed salmon decreased as mortality increased along the environmental gradient approaching natural conditions.ConclusionsThis study demonstrates that potential social interactions between wild and farmed salmon when reared communally are not likely to cause an overestimation of the genetic growth differences between them. Therefore, common-garden experiments represent a valid methodological approach to investigate genetic differences between wild and farmed salmon. As growth of surviving salmon of all origins became more similar as mortality increased along the environmental gradient approaching natural conditions, a hypothesis is presented suggesting that size-selective mortality is a possible factor reducing growth differences between these groups in the wild.


BMC Research Notes | 2012

Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin

Monica Favnebøe Solberg; Bjørn Olav Kvamme; Frank Nilsen; Kevin A. Glover

BackgroundTen generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress.ResultsIn general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon.ConclusionFarmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent that they may not be limiting growth rate.


PLOS ONE | 2014

Hatching time and alevin growth prior to the onset of exogenous feeding in farmed, wild and hybrid Norwegian Atlantic salmon

Monica Favnebøe Solberg; Per Gunnar Fjelldal; Frank Nilsen; Kevin A. Glover

The onset of exogenous feeding, when juveniles emerge from the gravel, is a critical event for salmonids where early emergence and large size provide a competitive advantage in the wild. Studying 131 farmed, hybrid and wild Norwegian Atlantic salmon families, originating from four wild populations and two commercial strains, we investigated whether approximately 10 generations of selection for faster growth has also resulted in increased somatic growth prior to the onset of exogenous feeding. In addition, we tested whether relaxed selection in farms has allowed for alterations in hatching time between farmed and wild salmon. Across three cohorts, wild salmon families hatched earlier than farmed salmon families, while hybrid families displayed intermediate hatching times. While the observed differences were small, i.e., 1–15 degree-days (0–3 days, as water temperatures were c. 5–6°C), these data suggest additive genetic variation for hatching time. Alevin length prior to exogenous feeding was positively related to egg size. After removal of egg size effects, no systematic differences in alevin length were observed between the wild and farmed salmon families. While these results indicate additive genetic variation for egg development timing, and wild salmon families consistently hatched earlier than farmed salmon families, these differences were so small they are unlikely to significantly influence early life history competition of farmed and wild salmon in the natural environment. This is especially the case given that the timing of spawning among females can vary by several weeks in some rivers. The general lack of difference in size between farmed and wild alevins, strongly suggest that the documented differences in somatic growth rate between wild and farmed Norwegian Atlantic salmon under hatchery conditions are first detectable after the onset of exogenous feeding.


Royal Society Open Science | 2016

Does density influence relative growth performance of farm, wild and F1 hybrid Atlantic salmon in semi-natural and hatchery common garden conditions?

Alison C. Harvey; Gareth Juleff; Gary R. Carvalho; Martin I. Taylor; Monica Favnebøe Solberg; Simon Creer; Lise Dyrhovden; Ivar Helge Matre; Kevin A. Glover

The conditions encountered by Atlantic salmon, Salmo salar L., in aquaculture are markedly different from the natural environment. Typically, farmed salmon experience much higher densities than wild individuals, and may therefore have adapted to living in high densities. Previous studies have demonstrated that farmed salmon typically outgrow wild salmon by large ratios in the hatchery, but these differences are much less pronounced in the wild. Such divergence in growth may be explained partly by the offspring of wild salmon experiencing higher stress and thus lower growth when compared under high-density farming conditions. Here, growth of farmed, wild and F1 hybrid salmon was studied at contrasting densities within a hatchery and semi-natural environment. Farmed salmon significantly outgrew hybrid and wild salmon in all treatments. Importantly, however, the reaction norms were similar across treatments for all groups. Thus, this study was unable to find evidence that the offspring of farmed salmon have adapted more readily to higher fish densities than wild salmon as a result of domestication. It is suggested that the substantially higher growth rate of farmed salmon observed in the hatchery compared with wild individuals may not solely be caused by differences in their ability to grow in high-density hatchery scenarios.


BMC Evolutionary Biology | 2016

Plasticity in growth of farmed and wild Atlantic salmon:Is the increased growth rate of farmed salmon caused by evolutionary adaptations to the commercial diet?

Alison C. Harvey; Monica Favnebøe Solberg; Eva Troianou; Gary R. Carvalho; Martin I. Taylor; Simon Creer; Lise Dyrhovden; Ivar Helge Matre; Kevin A. Glover

BackgroundDomestication of Atlantic salmon for commercial aquaculture has resulted in farmed salmon displaying substantially higher growth rates than wild salmon under farming conditions. In contrast, growth differences between farmed and wild salmon are much smaller when compared in the wild. The mechanisms underlying this contrast between environments remain largely unknown. It is possible that farmed salmon have adapted to the high-energy pellets developed specifically for aquaculture, contributing to inflated growth differences when fed on this diet. We studied growth and survival of 15 families of farmed, wild and F1 hybrid salmon fed three contrasting diets under hatchery conditions; a commercial salmon pellet diet, a commercial carp pellet diet, and a mixed natural diet consisting of preserved invertebrates commonly found in Norwegian rivers.ResultsFor all groups, despite equal numbers of calories presented by all diets, overall growth reductions as high 68 and 83%, relative to the salmon diet was observed in the carp and natural diet treatments, respectively. Farmed salmon outgrew hybrid (intermediate) and wild salmon in all treatments. The relative growth difference between wild and farmed fish was highest in the carp diet (1: 2.1), intermediate in the salmon diet (1:1.9) and lowest in the natural diet (1:1.6). However, this trend was non-significant, and all groups displayed similar growth reaction norms and plasticity towards differing diets across the treatments.ConclusionsNo indication of genetic-based adaptation to the form or nutritional content of commercial salmon diets was detected in the farmed salmon. Therefore, we conclude that diet alone, at least in the absence of other environmental stressors, is not the primary cause for the large contrast in growth differences between farmed and wild salmon in the hatchery and wild. Additionally, we conclude that genetically-increased appetite is likely to be the primary reason why farmed salmon display higher growth rates than wild salmon when fed ad lib rations under hatchery conditions. Our results contribute towards an understanding of the potential genetic changes that have occurred in farmed salmon in response to domestication, and the potential mechanisms underpinning genetic and ecological interactions between farmed escapees and wild salmonids.


Journal of Fish Biology | 2016

Plasticity in response to feed availability: Does feeding regime influence the relative growth performance of domesticated, wild and hybrid Atlantic salmon Salmo salar parr?

Alison C. Harvey; Monica Favnebøe Solberg; Kevin A. Glover; Martin I. Taylor; Simon Creer; Gary R. Carvalho

Growth of farmed, wild and F1 hybrid Atlantic salmon parr Salmo salar was investigated under three contrasting feeding regimes in order to understand how varying levels of food availability affects relative growth. Treatments consisted of standard hatchery feeding (ad libitum), access to feed for 4 h every day, and access to feed for 24 h on three alternate days weekly. Mortality was low in all treatments, and food availability had no effect on survival of all groups. The offspring of farmed S. salar significantly outgrew the wild S. salar, while hybrids displayed intermediate growth. Furthermore, the relative growth differences between the farmed and wild S. salar did not change across feeding treatments, indicating a similar plasticity in response to feed availability. Although undertaken in a hatchery setting, these results suggest that food availability may not be the sole driver behind the observed reduced growth differences found between farmed and wild fishes under natural conditions.


The Journal of Experimental Biology | 2017

Rapid growth causes abnormal vaterite formation in farmed fish otoliths

Tormey Reimer; Tim Dempster; Anna Wargelius; Per Gunnar Fjelldal; Tom Hansen; Kevin A. Glover; Monica Favnebøe Solberg; Stephen E. Swearer

ABSTRACT Sagittal otoliths are essential components of the sensory organs that enable all teleost fish to hear and maintain balance, and are primarily composed of calcium carbonate. A deformity, where aragonite (the normal crystal form) is replaced with vaterite, was first noted over 50 years ago but its underlying cause is unresolved. We evaluated the prevalence of vateritic otoliths from two captive rearing studies which suggested that fast growth, due to environmental rather than genetic control, led to vaterite development. We then tested this by varying light and temperature to create phenotypes with different growth rates, which resulted in fast growers (5 times larger) having 3 times more vaterite than slow growers. A decrease in either the ratio of otolith matrix proteins (otolin-1/OMM-64) or [Ca2+]/[CO32−] may explain why fast growth causes vaterite deposition. As vaterite decreases hearing sensitivity, reducing growth rates in hatcheries may improve the welfare of farmed fish and increase the success of conservation efforts. Summary: The rapid growth experienced by farmed fishes causes an otolith deformation rarely seen in the wild.


BMC Genetics | 2017

Ploidy elicits a whole-genome dosage effect: growth of triploid Atlantic salmon is linked to the genetic origin of the second maternal chromosome set

Alison C. Harvey; Per Gunnar Fjelldal; Monica Favnebøe Solberg; Tom Hansen; Kevin A. Glover

BackgroundThe Atlantic salmon aquaculture industry is investigating the feasibility of using sterile triploids to mitigate genetic interactions with wild conspecifics, however, studies investigating diploid and triploid performance often show contrasting results. Studies have identified dosage and dosage-compensation effects for gene expression between triploid and diploid salmonids, but no study has investigated how ploidy and parent-origin effects interact on a polygenic trait in divergent lines of Atlantic salmon (i.e. slow growing wild versus fast growing domesticated phenotype). This study utilised two experiments relating to the freshwater growth of diploid and triploid groups of pure wild (0% domesticated genome), pure domesticated (100% domesticated genome), and F1 reciprocal hybrid (33%, 50% or 66% domesticated genome) salmon where triploidy was either artificially induced (experiment 1) or naturally developed/spontaneous (experiment 2).ResultsIn both experiments, reciprocal hybrid growth was influenced by the dosage effect of the second maternal chromosome, with growth increasing as ploidy level increased in individuals with a domesticated dam (from 50% to 66% domesticated genome), and the inverse in individuals with a wild dam (from 50% to 33% domesticated genome).ConclusionsWe demonstrate that the combined effect of ploidy and parent-origin on growth, a polygenic trait, is regulated in an additive pattern. Therefore, in order to maximise growth potential, the aquaculture industry should consider placing more emphasis on the breeding value of the dam than the sire when producing triploid families for commercial production.

Collaboration


Dive into the Monica Favnebøe Solberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per Gunnar Fjelldal

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Hansen

Directorate of Fisheries

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francois Besnier

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge