Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Per Gunnar Fjelldal is active.

Publication


Featured researches published by Per Gunnar Fjelldal.


Journal of Pineal Research | 2004

Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar

Per Gunnar Fjelldal; Sindre Grotmol; Harald Kryvi; Nils Roar Gjerdet; Geir Lasse Taranger; Tom Hansen; Mark J R Porter; Geir K. Totland

Abstract:  This study describes the long‐term effects of surgical ablation of the pineal gland on the spine of 3‐yr‐old Atlantic salmon (Salmo salar L.) with a mean weight of 3.2 kg. Radiographic examinations showed that 82% of the pinealectomized fish developed marked lateral (scoliosis) and dorso‐ventral spinal curvatures. The proportions of the individual vertebral bodies and their mechanical properties were also altered. The stiffness, yield limit and resilience of the vertebral bodies, as measured by compression in the cranio‐caudal direction, were significantly lower in the pinealectomized than in the sham‐pinealectomized group. Calcium, phosphorous and total mineral content of the vertebral bodies were also significantly lower in the pinealectomized fish, while these parameters were similar in scales in the two groups. Alterations of the spinal curve accompanied by changes in the proportions, mechanical strength and mineral content of the vertebral bodies of the pinealectomized salmon indicate that melatonin has several functions related to vertebral bone growth. As the lesions found in salmon are similar to the spinal malformations observed in avian species and mammals after pinealectomy, this study strengthens the hypothesis of a phylogenetically conserved function of the pineal gland related to skeletal development.


Development Genes and Evolution | 2005

Heat shock during early somitogenesis induces caudal vertebral column defects in Atlantic salmon (Salmo salar).

Anna Wargelius; Per Gunnar Fjelldal; Tom Hansen

In several terrestrial vertebrates, heat shock (HS) during somitogenesis causes vertebral deformities. To determine if vertebral deformities can occur due to sudden temperature changes during early development in fish, Atlantic salmon embryos were HS treated during somitogenesis. Ten months later these individuals displayed a high prevalence of caudal vertebral column condensations (27–34%). The defects were located caudally of the abdominal cavity, displaying an even distribution in this region independent of time of HS. To determine if HS disturbed vertebral development during somitogenesis, two genes coding for markers of skeletal development were identified, namely, the secreted protein Shh (Sashh) and the transcription factor Twist (Satwist). These proteins are involved in the proliferation and specification of presumptive skeletal cells (sclerotome) in vertebrates. The spatial expression pattern of sashh and satwist in salmon indicated a functional conservation of these proteins. Furthermore, HS embryos displayed expressional disturbance in both sashh and satwist, indicating an effect of HS on sclerotomal cell patterning. However, the HS-protecting ability in embryos seems to be individually regulated because reduction in gene expression was not detected at all stages; in addition, HS did not induce somitic disturbance and vertebral deformity in all embryos.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011

Comparative seawater performance and deformity prevalence in out-of-season diploid and triploid Atlantic salmon (Salmo salar) post-smolts.

Eric Leclercq; John Taylor; Damian Fison; Per Gunnar Fjelldal; Meritxell Diez-Padrisa; Tom Hansen; Herve Migaud

The use of sterile triploid stock in the Atlantic salmon (Salmo salar, L) farming industry is the only commercially available means to prevent the ecological impact of domesticated escapees. This study compared the seawater (SW) performance and deformity prevalence of diploid and triploid post-smolts from 2 full-sib families produced out-of-season. Triploids completed smoltification 4 weeks earlier and at a significantly higher body-weight. Growth and survival in SW were not significantly affected by ploidy. The incidence of external deformities, dominated by jaw malformation, was ~12% in triploids and below 5% in diploids. Vertebral deformities were more prevalent in the fastest growing triploid family only. Heart morphometry differed between ploidies which may relate to a higher cardiac workload in triploids. No clear alteration of the gill apparatus was detected. The most significant detrimental effect of triploidy was on the rate and severity of cataract that were observed from August onward (50% and 92% of diploids and triploids respectively affected after 1-year in SW). At that time, cataracts were diagnosed by histological examinations as irreversible with a probable osmotic origin which could arise from factors such as water quality, nutritional deficiencies or thermal variations. This study warrants further research aiming at adapting rearing practices to the needs of triploid stocks as to improve their performance and welfare.


Journal of Fish Diseases | 2011

The effect of water temperature on vertebral deformities and vaccine‐induced abdominal lesions in Atlantic salmon, Salmo salar L.

A Grini; Tom Hansen; A Berg; Anna Wargelius; Per Gunnar Fjelldal

This study investigates the effects of water temperature (T) on vaccine-induced abdominal lesions (i.p. injection with oil-adjuvant vaccine) and vertebral deformities in Atlantic salmon. Quadruple groups of vaccinated (V) or unvaccinated (U) underyearling smolts were reared in tanks under four different temperature regimes for 6 weeks in fresh water (FW) followed by 6 weeks in sea water (SW). The four different T regimes were 10 °C FW-10 °C SW (10-10), 10 °C FW-16 °C SW (10-16), 16 °C FW-10 °C SW (16-10) and 16 °C FW-16 °C SW (16-16). After the temperature regimes were finished, the fish were group-tagged and transferred to a common sea cage for on-growth until harvest size. At termination, weight was significantly affected by both T and V, while lesion score and deformities were affected by T only. The weight difference between the largest and smallest U group was 20.3% (16-10 U: 2.4 kg, 10-16 U: 1.89 kg), while the largest difference between U and V fish within a T regime was 28.7% (16-16 U: 2.1 kg, 16-16 V: 1.5 kg). Fish from the 16-16, 16-10 and 10-16 regimes had a significant higher lesion score than those from the 10-10 regime. Fish from the 10-16 and 16-16 regimes displayed a significantly higher prevalence of vertebral deformities (palpation : 13-27%, radiology: 88-94%) than fish from the 10-10 and 16-10 regimes (palpation: 2-3%, radiology: 27-65%). Vertebra number 26 (located beneath the dorsal fin) was the most frequently affected vertebra in smolts, while vertebra number 43 (located above the anal fin) was most frequently affected in adults.


Reviews in Fisheries Science | 2012

Welfare Considerations of Triploid Fish

Thomas W. K. Fraser; Per Gunnar Fjelldal; Tom Hansen; Ian Mayer

Aquaculture production continues to increase to satisfy global demand, and as such, issues relating to its environmental sustainability and the welfare of fish are becoming more prominent within society. Sterile triploid fish (possessing one additional chromosome set to the more natural diploid state) are in use in aquaculture and fisheries management to avoid the problems associated with unwanted early sexual maturation and genetic interactions between wild and cultured fish. Triploids are physiologically and behaviorally similar to diploids, although ploidy effects do exist. This review focuses on the welfare of triploid fish within aquaculture and fisheries management. The main conclusions are that triploids appear more susceptible to temperature stress, have a higher incidence of deformities, and are less aggressive than their diploid counterparts. However, considerable knowledge gaps exist in triploid physiology and performance; therefore, triploid requirements for water quality, nutritional requirements, stocking densities, and slaughter methods cannot be fully assessed. In addition, other than growth and survival, no information exists on the performance of triploids when released into natural environments, and this is of considerable concern, as triploids are commonly used in catch-and-release fisheries. These matters become more pressing with todays increased emphasis on animal welfare.


BMC Veterinary Research | 2011

The culturable intestinal microbiota of triploid and diploid juvenile Atlantic salmon (Salmo salar) - a comparison of composition and drug resistance

Leon Cantas; Thomas W. K. Fraser; Per Gunnar Fjelldal; Ian Mayer; Henning Sørum

BackgroundWith the increased use of ploidy manipulation in aquaculture and fisheries management this investigation aimed to determine whether triploidy influences culturable intestinal microbiota composition and bacterial drug resistance in Atlantic salmon (Salmo salar). The results could provide answers to some of the physiological differences observed between triploid and diploid fish, especially in terms of fish health.ResultsNo ploidy effect was observed in the bacterial species isolated, however, triploids were found to contain a significant increase in total gut microbiota levels, with increases in Pseudomonas spp., Pectobacterium carotovorum, Psychrobacter spp., Bacillus spp., and Vibrio spp., (12, 42, 9, 10, and 11% more bacteria in triploids than diploids, respectively), whereas a decrease in Carnobacterium spp., within triploids compared to diploids was close to significant (8% more bacteria in diploids). With the exception of gentamicin, where no bacterial resistance was observed, bacterial isolates originating from triploid hosts displayed increased resistance to antibacterials, three of which were significant (tetracycline, trimethoprim, and sulphonamide).ConclusionResults indicate that triploidy influences both the community and drug resistance of culturable intestinal microbiota in juvenile salmon. These results demonstrate differences that are likely to contribute to the health of triploid fish and have important ramifications on the use of antibacterial drugs within aquaculture.


Journal of Anatomy | 2011

Sustained swimming increases the mineral content and osteocyte density of salmon vertebral bone

Geir K. Totland; Per Gunnar Fjelldal; Harald Kryvi; Guro Løkka; Anna Wargelius; Anita Sagstad; Tom Hansen; Sindre Grotmol

This study addresses the effects of increased mechanical load on the vertebral bone of post‐smolt Atlantic salmon by forcing them to swim at controlled speeds. The fish swam continuously in four circular tanks for 9 weeks, two groups at 0.47 body lengths (bl) × s−1 (non‐exercised group) and two groups at 2 bl × s−1 (exercised group), which is just below the limit for maximum sustained swimming speed in this species. Qualitative data concerning the vertebral structure were obtained from histology and electron microscopy, and quantitative data were based on histomorphometry, high‐resolution X‐ray micro‐computed tomography images and analysis of bone mineral content, while the mechanical properties were tested by compression. Our key findings are that the bone matrix secreted during sustained swimming had significantly higher mineral content and mechanical strength, while no effect was detected on bone in vivo architecture. mRNA levels for two mineralization‐related genes bgp and alp were significantly upregulated in the exercised fish, indicating promotion of mineralization. The osteocyte density of the lamellar bone of the amphicoel was also significantly higher in the exercised than non‐exercised fish, while the osteocyte density in the cancellous bone was similar in the two groups. The vertebral osteocytes did not form a functional syncytium, which shows that salmon vertebral bone responds to mechanical loading in the absence of an extensive connecting syncytial network of osteocytic cell processes as found in mammals, indicating the existence of a different mechanosensing mechanism. The adaptive response to increased load is thus probably mediated by osteoblasts or bone lining cells, a system in which signal detection and response may be co‐located. This study offers new insight into the teleost bone biology, and may have implications for maintaining acceptable welfare for farmed salmon.


Journal of Fish Diseases | 2010

Dietary fatty acids and inflammation in the vertebral column of Atlantic salmon, Salmo salar L., smolts: a possible link to spinal deformities

L. Gil Martens; Erik-Jan Lock; Per Gunnar Fjelldal; Anna Wargelius; Pedro Araujo; Bente E. Torstensen; Paul Witten; Tom Hansen; Rune Waagbø; Robin Ørnsrud

Vegetable oils (Vo) are an alternative to fish oil (Fo) in aquaculture feeds. This study aimed to evaluate the effect of dietary soybean oil (Vo diet), rich in linoleic acid, and of dietary fish oil (Fo diet) on the development of spinal deformities under bacterial lipopolysaccharide (LPS)-induced chronic inflammation conditions in Atlantic salmon, Salmo salar L. Fish [25 g body weight (BW)] were fed the experimental diets for 99 days. On day 47 of feeding (40 g BW), fish were subjected to four experimental regimes: (i) intramuscular injections with LPS, (ii) sham-injected phosphate-buffered saline (PBS), (iii) intraperitoneally injected commercial oil adjuvant vaccine, or (iv) no treatment. The fish continued under a common feeding regime in sea water for 165 more days. Body weight was temporarily higher in the Vo group than in the Fo group prior to immunization and was also affected by the type of immunization. At the end of the trial, no differences were seen between the dietary groups. The overall prevalence of spinal deformities was approximately 14% at the end of the experiment. The Vo diet affected vertebral shape but did not induce spinal deformities. In groups injected with LPS and PBS, spinal deformities ranged between 21% and 38%, diet independent. Deformed vertebrae were located at or in proximity to the injection point. Assessment of inflammatory markers revealed high levels of plasma prostaglandin E₂ (PGE₂) in the Vo-fed and LPS-injected groups, suggesting an inflammatory response to LPS. Cyclooxigenase 2 (COX-2) mRNA expression in bone was higher in fish fed Fo compared to Vo-fed fish. Gene expression of immunoglobulin M (IgM) was up-regulated in bone of all LPS-injected groups irrespective of dietary oil. In conclusion, the study suggests that Vo is not a risk factor for the development of inflammation-related spinal deformities. At the same time, we found evidence that localized injection-related processes could trigger the development of vertebral body malformations.


Journal of Fish Diseases | 2014

The effect of ploidy and incubation temperature on survival and the prevalence of aplasia of the septum transversum in Atlantic salmon, Salmo salar L.

Thomas W. K. Fraser; M S Fleming; Trygve T. Poppe; Tom Hansen; Per Gunnar Fjelldal

Heart deformities are a concern in aquaculture and are linked to egg incubation temperature. Diploid and triploid Atlantic salmon, Salmo salar L., were incubated at 6, 8 and 10 °C and analysed for aplasia of the septum transversum (n = 150 ploidy⁻¹ incubation temperature⁻¹). Heart morphology (size and shape) was assessed in fish incubated at 6 °C and in fish with and without aplasia of the septum transversum (n = 9 group⁻¹) incubated at 10 °C. Egg mortality was significantly higher in triploids than in diploids at all incubation temperatures, and increased egg incubation temperatures increased mortality in both ploidy. Triploids grew quicker than diploids after egg incubation at 10 °C, but not at 6 °C. Aplasia of the septum transversum occurred only in triploid fish after incubation at 6 °C and 8 °C (0.7% and 3.3%, respectively) and was significantly greater (P ≤ 0.05) in triploids after incubation at 10 °C compared with diploids (30% and 18%, respectively). Aplasia of the septum transversum significantly increased heart mass and resulted in a long flat ventricle compared with fish displaying a septum transversum. The results suggest triploid salmon should be incubated below 8 °C.


The Journal of Experimental Biology | 2009

Continuous light affects mineralization and delays osteoid incorporation in vertebral bone of Atlantic salmon (Salmo salar L.).

Anna Wargelius; Per Gunnar Fjelldal; Ulla Nordgarden; Tom Hansen

SUMMARY In order to study the effects of photoperiod on fish bone, Atlantic salmon (Salmo salar L.) were exposed to two light regimes (natural and continuous light) from January until June. During the experimental period, several parameters related to the inorganic (minerals) and organic (osteoid) phases were measured. Changes in the organic phase were related to mechanical strength (yield-load) and the expression of the genes sonic hedgehog (shh) and collagen type I alpha 2 (col I). Co-variation between yield-load and the expression of both shh and col I were detected in both groups. It was also shown that fish on the continuous light regime had delayed activation of osteoid incorporation. Mineralization properties were measured with stiffness, mineral incorporation per day and expression of alkaline phosphatase (alp) and matrix Gla protein (mgp). Stiffness, mineral incorporation and gene expression followed the same trend in both light groups in late spring, whereas an increase in the expression of mgp and alp was detected in April, followed by significantly higher stiffness at last sampling in both light groups. These results indicate that constant light affects mineralization and delays osteoid incorporation in Atlantic salmon during the spring. However, in this experiment light treatment did not promote the development of vertebral deformities. Our results also suggest that shh can be used as a marker of osteoblast proliferation and col I a marker of osteoid incorporation, and that both alp and mgp expression could be associated with a rapid increase in mineralization in Atlantic salmon vertebrae.

Collaboration


Dive into the Per Gunnar Fjelldal's collaboration.

Top Co-Authors

Avatar

Tom Hansen

Directorate of Fisheries

View shared research outputs
Top Co-Authors

Avatar

Thomas W. K. Fraser

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Mayer

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Dempster

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Erling Olaf Koppang

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge